Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automated Generation of Behavioral Signatures for Malicious Web Campaigns

  • Conference paper
  • First Online:
Information Security (ISC 2024)

Abstract

Web-based malicious campaigns target internet users across multiple domains to launch various forms of attacks. Extant research exploring the detection of such malicious campaigns involves applying supervised or unsupervised learning techniques on targeted campaign data producing machine learning models that are often expensive to train and are sluggish to react to the ephemeral nature of malicious campaigns. In this paper, we present an automated web-based malicious campaign detection system that produces campaign signatures representing both their static and dynamic behavior. We generated 379 campaign signatures that matched 36,427 unique malicious URLs with an extremely low false-positive rate (0.008%). We further applied our signatures on real world user traffic and identified 471 URLs, which were verified through VirusTotal and manual inspection. Our results provide valuable insight into web-based malicious campaign detection and our system could be utilized to improve existing defenses and the relevant field of threat intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. alexa.com. Alexa Top Sites. https://www.alexa.com/topsites. Accessed 28 Nov 2021

  2. Calzavara, S., Roth, S., Rabitti, A., Backes, M., Stock, B.: A tale of two headers: a formal analysis of inconsistent click-jacking protection on the web. In: Proceedings of the USENIX Security Symposium (2020)

    Google Scholar 

  3. Canali, D., Cova, M., Vigna, G., Kruegel, C.: Prophiler : a fast filter for the large-scale detection of malicious web pages categories and subject descriptors. In: Proceedings of the International World Wide Web Conference (WWW) (2011)

    Google Scholar 

  4. Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-by-download attacks and malicious javaScript code. In: Proceedings of the International World Wide Web Conference (WWW) (2010)

    Google Scholar 

  5. Curtsinger, C., Livshits, B., Zorn, B.G., Seifert, C.: Zozzle: fast and precise in-browser javascript malware detection. In: Proceedings of the USENIX Security Symposium (2011)

    Google Scholar 

  6. Egele, M., Kruegel, C., Kirda, E., Yin, H., Song, D.: Dynamic spyware analysis. In: Proceedings of the USENIX Annual Technical Conference (2007)

    Google Scholar 

  7. Fass, A., Backes, M., Stock, B.: HideNoSeek: camouflaging malicious javaScript in benign ASTs. In: Proceedings of the ACM Conference on Computer and Communications Security (CCS) (2019)

    Google Scholar 

  8. Fass, A., Krawczyk, R.P., Backes, M., Stock, B.: JaSt: fully syntactic detection of malicious (obfuscated) javascript. In: Giuffrida, C., Bardin, S., Blanc, G. (eds.) DIMVA 2018. LNCS, vol. 10885, pp. 303–325. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93411-2_14

    Chapter  Google Scholar 

  9. Feurer, M., Hutter, F.: Hyperparameter optimization. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_1

    Chapter  Google Scholar 

  10. Fredrikson, M., Jha, S., Christodorescu, M., Sailer, R., Yan, X.: Synthesizing near-optimal malware specifications from suspicious behaviors. In: Proceedings of the IEEE Symposium on Security and Privacy (2010)

    Google Scholar 

  11. Jueckstock, J., Kapravelos, A.: Visiblev8: in-browser monitoring of javascript in the wild. In: Proceedings of the ACM SIGCOMM Internet Measurement Conference (IMC) (2019)

    Google Scholar 

  12. Kaplan, S., Livshits, B., Zorn, B., Siefert, C., Curtsinger, C.: “NOFUS: automatically detecting"+ string. fromcharcode (32)+ “obfuscated". tolowercase ()+ “javascript code. In Technical report, Technical Report MSR-TR 2011–57, Microsoft Research (2011)

    Google Scholar 

  13. Kapravelos, A., Shoshitaishvili, Y., Cova, M., Kruegel, C., Vigna, G.: Revolver: an automated approach to the detection of evasive web-based malware. In: Proceedings of the USENIX Security Symposium (2013)

    Google Scholar 

  14. Kharraz, A., Robertson, W., Kirda, E. : Surveylance: automatically detecting online survey scams. In: Proceedings of the IEEE Symposium on Security and Privacy. IEEE(2018)

    Google Scholar 

  15. Kolbitsch, C., Comparetti, P.M., Kruegel, C., Kirda, E., Zhou, X.Y., Wang. X.: Effective and efficient malware detection at the end host. In: Proceedings of the USENIX Security Symposium (2009)

    Google Scholar 

  16. Kolbitsch, C., Livshits, B., Zorn, B., Seifert, C.: Rozzle: de-cloaking internet malware. In: Proceedings of the IEEE Symposium on Security and Privacy (2012)

    Google Scholar 

  17. Kutt, B., Hewlett, W., Starov, O., Zhou, Y.: Innocent until proven guilty (IUPG): building deep learning models with embedded robustness to out-of-distribution content. In: 2021 IEEE Security and Privacy Workshops (SPW) (2021)

    Google Scholar 

  18. Lee, S., Kim, J.: WARNINGBIRD: a near real-time detection system for suspicious URLs in twitter stream. IEEE Trans. Dependable Secure Comput. 10(3), 183–195 (2013)

    Article  Google Scholar 

  19. Lu, L., Perdisci, R., Lee., W.: Surf: detecting and measuring search poisoning. In: Proceedings of the ACM Conference on Computer and Communications Security (CCS) (2011)

    Google Scholar 

  20. microsoft.com/. HTML smuggling surges: highly evasive loader technique increasingly used in banking malware, targeted attacks. https://www.microsoft.com/security/blog/2021/11/11/html-smuggling-surges-highly-evasive-loader-technique-increasingly-used-in-banking-malware-targeted-attacks/. Accessed 28 Nov 2021

  21. Miramirkhani, N., Starov, O., Nikiforakis, N.: Dial one for scam: a large-scale analysis of technical support scams. In: Proceedings of the Symposium on Network and Distributed System Security (NDSS) (2017)

    Google Scholar 

  22. Muggleton, S., Feng, C., et al.: Efficient induction of logic programs. Citeseer (1990)

    Google Scholar 

  23. Nelms, T., Perdisci, R., Antonakakis, M., Ahamad, M.: \(\{\)WebWitness\(\}\): investigating, categorizing, and mitigating malware download paths. In: Proceedings of the USENIX Security Symposium (2015)

    Google Scholar 

  24. Nelms, T., Perdisci, R., Antonakakis, M., Ahamad, M.: Towards measuring and mitigating social engineering software download attacks. In: Proceedings of the USENIX Security Symposium (2016)

    Google Scholar 

  25. Oest, A., et al.: Sunrise to sunset: analyzing the end-to-end life cycle and effectiveness of phishing attacks at scale. In: Proceedings of the USENIX Security Symposium (2020)

    Google Scholar 

  26. Plotkin, G.: Automatic methods of inductive inference. Ph.D. Thesis (1972)

    Google Scholar 

  27. Plotkin, G.D.: A further note on inductive generalization. Mach. Intell. 5(1), 153–163 (1971)

    Google Scholar 

  28. Rafique, M.Z., Van Goethem, T., Joosen, W., Huygens, C., Nikiforakis, N.: It’s free for a reason: exploring the ecosystem of free live streaming services. In: Proceedings of the Symposium on Network and Distributed System Security (NDSS) (2016)

    Google Scholar 

  29. Ratanaworabhan, P., Livshits, V.B., Zorn., B.G.: NOZZLE: a defense against heap-spraying code injection attacks. In: Proceedings of the USENIX Security Symposium (2009)

    Google Scholar 

  30. Srinivasan, B., et al.: Exposing search and advertisement abuse tactics and infrastructure of technical support scammers. In: Proceedings of the International World Wide Web Conference (WWW) (2018)

    Google Scholar 

  31. Starov, O., Zhou, Y., Wang, J.: Detecting malicious campaigns in obfuscated javascript with scalable behavioral analysis. In: 2019 IEEE Security and Privacy Workshops (SPW) (2019)

    Google Scholar 

  32. Starov, O., Zhou, Y., Zhang, X., Miramirkhani, N., Nikiforakis, N.: Betrayed by your dashboard: discovering malicious campaigns via web analytics. In: Proceedings of the International World Wide Web Conference (WWW) (2018)

    Google Scholar 

  33. Stringhini, G., Kruegel, C., Vigna, G.: Shady paths: leveraging surfing crowds to detect malicious web pages. In: Proceedings of the ACM Conference on Computer and Communications Security (CCS) (2013)

    Google Scholar 

  34. tranco-list.eu. Tranco - A Research-Oriented Top Sites Ranking Hardened Against Manipulation. https://tranco-list.eu/. Accessed 28 Nov 2021

  35. Vadrevu, P., Perdisci, R.: What you see is not what you get: discovering and tracking social engineering attack campaigns. In: Proceedings of the ACM SIGCOMM Internet Measurement Conference (IMC) (2019)

    Google Scholar 

  36. virustotal.com. VirusTotal - Analyze suspicious files and URLs to detect types of malware, automatically share them with the security community. https://www.virustotal.com/gui/home/upload. Accessed 28 Nov 2021

  37. Xu, W., Zhang, F., Zhu, S.: Jstill: mostly static detection of obfuscated malicious javascript code. In: Proceedings of the third ACM Conference on Data and Application Security and Privacy - CODASPY (2013)

    Google Scholar 

  38. Yujian, L., Bo, L.: A normalized levenshtein distance metric. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1091–1095 (2007)

    Article  Google Scholar 

Download references

Acknowledgement

We thank the anonymous reviewers for their helpful feedback. This work was supported by the National Science Foundation (NSF) under grants CNS-2138138 and CNS-2047260. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaown Sarker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarker, S., Melicher, W., Starov, O., Das, A., Kapravelos, A. (2025). Automated Generation of Behavioral Signatures for Malicious Web Campaigns. In: Mouha, N., Nikiforakis, N. (eds) Information Security. ISC 2024. Lecture Notes in Computer Science, vol 15258. Springer, Cham. https://doi.org/10.1007/978-3-031-75764-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75764-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75763-1

  • Online ISBN: 978-3-031-75764-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics