Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Assessment of Range of Motion Before and After Hamstring Percussion Therapy Using Thermography and CNN

  • Conference paper
  • First Online:
Artificial Intelligence over Infrared Images for Medical Applications (AIIIMA 2024)

Abstract

Percussion therapy has positive effects on the human body, such as increasing strength, improving range of motion and flexibility. This is due to the vibrations it produces, which when applied to the human body, cause vasodilatory responses. The main contribution of this work is a methodology based on infrared thermography and convolutional neural network to evaluate and classify the range of motion in patients undergoing hamstring percussion therapy. It consists of three steps: (1) data preparation, (2) data augmentation, and (3) convolutional neural network design and validation. In the data preparation step, 50 images acquired in the pre- and post-percussion therapy phases were pooled, and then each image was labeled in one of the two classes: Within and outside range of motion. Data augmentation, including techniques such as flipping and contrast adjustment, was used to expand the dataset. A convolutional neural network model was used to classify the images. When evaluated on a test set, an accuracy of 90.48% was obtained for the classification of 2 classes. These results demonstrate the efficacy and robustness of the approach to assess range of motion in patients undergoing hamstring percussion therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Skinner, B., Dunn, L., Moss, R.: The acute effects of theraguntm percussive therapy on viscoelastic tissue dynamics and hamstring group range of motion. J. Sports Sci. Med. 496–501 (2023). https://doi.org/10.52082/jssm.2023.496

  2. El-berkawy, H.: Effect of percussion massage gun on hamstring flexibility in patients with knee osteoarthritis: a randomized controlled trial. Benha Int. J. Phys. Therapy 1(1), 1–9 (2023). https://doi.org/10.21608/bijpt.2023.255236.1000

    Article  Google Scholar 

  3. Ferreira, R.M., et al.: The effects of massage guns on performance and recovery: a systematic review. J. Funct. Morphol. Kinesiol. 8(3), 138 (2023). https://doi.org/10.3390/jfmk8030138

    Article  Google Scholar 

  4. Pilch, W., et al.: The impact of vibration therapy interventions on skin condition and skin temperature changes in young women with lipodystrophy: a pilot study. Evid.-Based Complement. Alternat. Med. 2019, 1–9 (2019). https://doi.org/10.1155/2019/8436325

    Article  Google Scholar 

  5. Côrte, A.C. Pedrinelli, A., Marttos, A., Souza, I.F.G., Grava, J., José Hernandez, A.: Infrared thermography study as a complementary method of screening and prevention of muscle injuries: pilot study. BMJ Open Sport Exerc. Med. 5(1), e000431 (2019). https://doi.org/10.1136/bmjsem-2018-000431

  6. Trejo-Chavez, O., Priego-Quesada, J.I., Gonzalez-Hernandez, M.P., Morales-Hernandez, L.A., Cruz-Albarran, I.A.: Knee skin temperature response of patients with bilateral patellofemoral syndrome before and after heat and cold stress. J. Therm. Biol. 115, 103601 (2023). https://doi.org/10.1016/j.jtherbio.2023.103601

    Article  Google Scholar 

  7. Alshehri, A., AlSaeed, D.: Breast cancer detection in thermography using Convolutional Neural Networks (CNNs) with deep attention mechanisms. Appl. Sci. 12(24), 12922 (2022). https://doi.org/10.3390/app122412922

    Article  Google Scholar 

  8. de Freitas Barbosa, V.A., de Santana, M.A., Andrade, M.K.S., de Lima, C.F., dos Santos, W.P.: Deep-wavelet neural networks for breast cancer early diagnosis using mammary termographies. In: Deep Learning for Data Analytics, ch. 6, pp. 99–124. Elsevier (2020). https://doi.org/10.1016/B978-0-12-819764-6.00007-7

  9. Farooq, M.A., Corcoran, P.: Infrared imaging for human thermography and breast tumor classification using thermal images. In: 2020 31st Irish Signals and Systems Conference (ISSC), pp. 1–6. IEEE (2020). https://doi.org/10.1109/ISSC49989.2020.9180164

  10. Mohamed, E.A., Rashed, E.A., Gaber, T., Karam, O.: Deep learning model for fully automated breast cancer detection system from thermograms. PLoS ONE 17(1), e0262349 (2022). https://doi.org/10.1371/journal.pone.0262349

    Article  Google Scholar 

  11. Filipe, V., Teixeira, P., Teixeira, A.: Automatic classification of foot thermograms using machine learning techniques. Algorithms 15(7), 236 (2022). https://doi.org/10.3390/a15070236

    Article  Google Scholar 

  12. Trejo-Chavez, O., Amezquita-Sanchez, J.P., Huerta-Rosales, J.R., Morales-Hernandez, L.A., Cruz-Albarran, I.A., Valtierra-Rodriguez, M.: Automatic knee injury identification through thermal image processing and convolutional neural networks. Electronics (Basel) 11(23), 3987 (2022). https://doi.org/10.3390/electronics11233987

    Article  Google Scholar 

  13. Ayala, F., Sainz de Baranda, P., Cejudo, A., Santonja, F.: Pruebas angulares de estimación de la flexibilidad isquiosural: descripción de los procedimientos exploratorios y valores de referencia. Rev Andal Med Deport 6(3), 120–128 (2013). https://doi.org/10.1016/S1888-7546(13)70046-7

    Article  Google Scholar 

  14. de Lucena, G.L., dos Santos Gomes, C., Guerra, R.o.: Prevalence and associated factors of osgood-schlatter syndrome in a population-based sample of Brazilian adolescents. Am. J. Sports Med. 39(2), 415–420 (2011). https://doi.org/10.1177/0363546510383835

  15. Miñarro, P.A.L., García, P.L.R., Lucas, J.L.Y., Cárceles, F.A., Fiol, C.F.: Validez de la posición del raquis lumbo-sacro en flexión como criterio de extensibilidad isquiosural en deportistas jóvenes (2008). https://api.semanticscholar.org/CorpusID:140877519

  16. Konrad, A., Glashüttner, C., Reiner, M.M., Bernsteiner, D., Tilp, M.: The acute effects of a percussive massage treatment with a hypervolt device on plantar flexor muscles’ range of motion and performance. J. Sports Sci. Med. 19(4), 690 (2020)

    Google Scholar 

  17. Cheatham, S.W., Baker, R.T., Behm, D.G., Stull, K., Kolber, M.J.: Mechanical percussion devices: a survey of practice patterns among healthcare professionals. Int. J. Sports Phys. Ther. 16(3) (2021). https://doi.org/10.26603/001c.23530

Download references

Acknowledgments

Alejandra Vilchis Yubi would like to thank the Mexican Council of Humanities, Science and Technology for the scholarship 1313994.

Author information

Authors and Affiliations

Authors

Contributions

The authors declare no competing interests.

Corresponding author

Correspondence to Alejandra Vilchis-Yubi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vilchis-Yubi, A., Cedeno-Moreno, R., Espino-Gonzalez, J.A., Mancilla-Morales, A., Morales-Hernandez, L.A., Cruz-Albarran, I.A. (2025). Assessment of Range of Motion Before and After Hamstring Percussion Therapy Using Thermography and CNN. In: Kakileti, S.T., Manjunath, G., Schwartz, R.G., Ng, E.Y.K. (eds) Artificial Intelligence over Infrared Images for Medical Applications. AIIIMA 2024. Lecture Notes in Computer Science, vol 15279. Springer, Cham. https://doi.org/10.1007/978-3-031-76584-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-76584-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-76583-4

  • Online ISBN: 978-3-031-76584-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics