Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards a Simplified AI Adoption Framework: Success Factors for the Implementation of Artificial Intelligence Information Systems

  • Conference paper
  • First Online:
HCI International 2024 – Late Breaking Papers (HCII 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15382))

Included in the following conference series:

  • 193 Accesses

Abstract

Adopting AI within organizations promises various benefits, including enhanced productivity, cost reduction, process automation, and the innovation of services and business models. However, many organizations, particularly small and medium-sized enterprises (SMEs) with limited resources, face challenges in successfully implementing AI, such as lack of expertise or insufficient data quality. Therefore, this study aims to address these challenges by developing a comprehensive framework for identifying and synthesizing success factors for AI adoption. Utilizing a design science research (DSR) approach, the study combines insights from a systematic literature review and expert interviews across different industries. The resulting outcome represents a simplified AI adoption framework designed to support AI adoption by aggregating success factors across several clusters: Strategy and Planning, AI Expertise and Support, Data Considerations, Infrastructure and Resources, Market and Competition, Ethical and Legal, and Implementation and Integration. Each cluster encompasses interrelated factors prioritized based on their frequency in the literature and validation through experts. The framework could serve as a starting point for organizations, particularly for SMEs, to navigate AI adoption effectively. It emphasizes the importance of relevant success factors such as defining an AI strategy, establishing data structures, fostering an innovative corporate culture, and ethical considerations. Organizations can mitigate risks and enhance their AI integration efforts by addressing these factors. The study contributes to the literature by offering a practice-based artifact aggregating existing success factors, providing a valuable entry point for organizations embarking on AI adoption projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clarke, S., Whittlestone, J.: A survey of the potential long-term impacts of AI: how AI could lead to long-term changes in science, cooperation, power, epistemics and values. In: Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society, pp. 192–202. ACM (2022)

    Google Scholar 

  2. Cooper, R.G.: The AI transformation of product innovation. Ind. Mark. Manag. 119, 62–74 (2024)

    Article  MATH  Google Scholar 

  3. Davenport, R.R.T.H.: Artificial intelligence for the real world. Harvard Bus. Rev. (2018)

    Google Scholar 

  4. Iansiti, M., Lakhani, K.R.: Competing in the age of AI: strategy and leadership when algorithms and networks run the world. Harvard Business Review Press (2020)

    Google Scholar 

  5. Rzepka, C., Berger, B.: User interaction with AI-enabled systems: a systematic review of is research. In: 39th International Conference on Information Systems, San Francisco 2018 (2018)

    Google Scholar 

  6. Merhi, M.I.: A process model of artificial intelligence implementation leading to proper decision making. In: Dennehy, D., Griva, A., Pouloudi, N., Dwivedi, Y.K., Pappas, I., Mäntymäki, M. (eds.) I3E 2021. LNCS, vol. 12896, pp. 40–46. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85447-8_4

    Chapter  MATH  Google Scholar 

  7. Merhi, M.I.: An evaluation of the critical success factors impacting artificial intelligence implementation. Int. J. Inf. Manag. 69, 102545 (2023)

    Article  MATH  Google Scholar 

  8. Wang, W., Chen, L., Xiong, M., Wang, Y.: Accelerating AI adoption with responsible AI signals and employee engagement mechanisms in health care. Inf. Syst. Front. 25(6), 2239–2256 (2023)

    Article  MATH  Google Scholar 

  9. Shinde, P.P., Shah, S.: A review of machine learning and deep learning applications. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), pp. 1–6 (2018)

    Google Scholar 

  10. Calp, M.H.: The role of artificial intelligence within the scope of digital transformation in enterprises. In: In Advanced MIS and digital transformation for increased creativity and innovation in business, pp. 122-146. IGI Global. (2020)

    Google Scholar 

  11. Dwivedi, Y.K., et al.: Artificial intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 57, 101994 (2021)

    Google Scholar 

  12. Vocke, C., Constantinescu, C., Popescu, D.: Application potentials of artificial intelligence for the design of innovation processes. Procedia CIRP 84, 810–813 (2019)

    Article  MATH  Google Scholar 

  13. Dogru, A.K., Keskin, B.B.: Ai in operations management: applications, challenges and opportunities. J. Data Inf. Manag. 2(2), 67–74 (2020)

    Article  MATH  Google Scholar 

  14. Åström, J., Reim, W., Parida, V.: Value creation and value capture for AI business model innovation: a three-phase process framework. RMS 16(7), 2111–2133 (2022)

    Article  Google Scholar 

  15. Sheikhtaheri, A., Sadoughi, F., Hashemi Dehaghi, Z.: Developing and using expert systems and neural networks in medicine: a review on benefits and challenges. J. Med. Syst. 38(9), 110 (2014)

    Google Scholar 

  16. Venkatesh, V.: Adoption and use of AI tools: a research agenda grounded in UTAUT. Ann. Oper. Res. 308(1), 641–652 (2022)

    Article  MATH  Google Scholar 

  17. Dietvorst, B.J., Simmons, J.P., Massey, C.: Algorithm aversion: people erroneously avoid algorithms after seeing them err. J. Experimental Psychol. General (2015)

    Google Scholar 

  18. Jussupow, E., Benbasat, I., Heinzl, A.: Why are we averse towards algorithms? A comprehensive literature review on algorithm aversion. In: European Conference on Information Systems (2020)

    Google Scholar 

  19. Brasse, J., Broder, H.R., Förster, M., Klier, M., Sigler, I.: Explainable artificial intelligence in information systems: a review of the status quo and future research directions. Electron. Mark. 33(1), 26 (2023)

    Google Scholar 

  20. Berente, N., Bin, G., Recker, J., Santhanam, R.: Managing artificial intelligence. MIS Q. 45, 1433–1450 (2021)

    Google Scholar 

  21. Ca stelvecchi, D.: Can we open the black box of AI? : Nature News. 538(7623) (2016)

    Google Scholar 

  22. Shrivastav, M.: Barriers related to AI implementation in supply chain management. J. Glob. Inf. Manag. 30, 1–19 (2022)

    Article  MATH  Google Scholar 

  23. Büttner, K., Antons, O., Arlinghaus, J.: Exploring implementation barriers of machine learning in production planning and control. Procedia CIRP 120, 1546–1551 (2023)

    Article  MATH  Google Scholar 

  24. Bérubé, M., Giannelia, T., Vial, G.: Barriers to the implementation of AI in organizations: findings from a Delphi study. In: HICSS 2021 Proceedings (2021)

    Google Scholar 

  25. Chomutare, T., et al.: Artificial intelligence implementation in healthcare: a theory-based scoping review of barriers and facilitators. Int. J. Environ. Res. Publ. Health 19 (2022)

    Google Scholar 

  26. Bahl, M.: Artificial intelligence in clinical practice: implementation considerations and barriers. J. Breast Imaging 4(6), 632–639 (2022)

    Article  MATH  Google Scholar 

  27. Al Alamin, M.A., Uddin, G., Malakar, S., Afroz, S., Haider, T., Iqbal, A.: Developer discussion topics on the adoption and barriers of low code software development platforms. Empir. Softw. Eng. 28 (2022)

    Google Scholar 

  28. Hamm, P., Klesel, M.: Success factors for the adoption of artificial intelligence in organizations: a literature review. In: AMCIS 2021 Proceedings (2021)

    Google Scholar 

  29. Sangers, T.E., Wakkee, M., Moolenburgh, F.J., Nijsten, T., Lugtenberg, M.: Towards successful implementation of artificial intelligence in skin cancer care: a qualitative study exploring the views of dermatologists and general practitioners. Arch. Dermatol. Res. 315, 1187–1195 (2023)

    Google Scholar 

  30. Wolff, J., Pauling, J., Keck, A., Baumbach, J.: Success factors of artificial intelligence implementation in healthcare. Front. Digit. Health 3 (2021)

    Google Scholar 

  31. Bertl, M., Ross, P., Draheim, D.: Systematic AI support for decision-making in the healthcare sector: obstacles and success factors. Health Policy Technol. 12(3), 100748 (2023)

    Article  MATH  Google Scholar 

  32. Demlehner, Q., Schoemer, D., Laumer, S.: How can artificial intelligence enhance car manufacturing? A Delphi study-based identification and assessment of general use cases. Int. J. Inf. Manag. 58, 102317 (2021)

    Article  MATH  Google Scholar 

  33. Nguyen, Q.N., Sidorova, A., Torres, R.: Artificial intelligence in business: a literature review and research agenda. Commun. Assoc. Inf. Syst. 50(1), 7 (2022)

    Google Scholar 

  34. Wanner, J., Herm, L.-V., Heinrich, K., Janiesch, C.: The effect of transparency and trust on intelligent system acceptance: Evidence from a user-based study. Electron. Mark. 32(4), 2079–2102 (2022)

    Article  Google Scholar 

  35. Nascimento, A., Meirelles, F.: An artificial intelligence adoption intention model (ai2m) inspired by UTAUT : ISLA 2022 Proceedings 21, (2022)

    Google Scholar 

  36. Hevner, A.: A three cycle view of design science research. Scand. J. Inf. Syst. 19 (2007)

    Google Scholar 

  37. Duan, Y., Edwards, J.S., Dwivedi, Y.K.: Artificial intelligence for decision making in the era of big data - evolution, challenges and research agenda. Int. J. Inf. Manag. 48, 63–71 (2019)

    Google Scholar 

  38. Bettoni, A., Matteri, D., Montini, E., Gadysz, B., Carpanzano, E.: An AI adoption model for SMEs: a conceptual framework. IFAC-PapersOnLine 54, 702–708 (2021)

    Google Scholar 

  39. Tornatzky, L.G., Fleischer, M., Chakrabarti, A.K.: The Processes of Technological Innovation. Lexington Books (1990)

    Google Scholar 

  40. Pumplun, L., Tauchert, C., Heidt, M.: A new organizational chassis for artificial intelligence - exploring organizational readiness factors. In: European Conference on Information Systems (2019)

    Google Scholar 

  41. Smit, D., Eybers, S., van der Merwe, A., Wies, R.: South African Institute of Computer Scientists and Information Technologists. CCIS, vol. 1878. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-39652-6

  42. Alsheibani, S., Cheung, Y., Messom, C.: Artificial intelligence adoption: AI-readiness at firm-level. In: PACIS 2018 Proceedings (2018)

    Google Scholar 

  43. Sohn, K., Kwon, O.: Technology acceptance theories and factors influencing artificial intelligence-based intelligent products. Telematics Inform. 47, 101324 (2020)

    Article  MATH  Google Scholar 

  44. Lin, C.-H., Shih, H.-Y., Sher, P.J.: Integrating technology readiness into technology acceptance: the tram model. Psychol. Mark. 24, 641–657 (2007)

    Article  Google Scholar 

  45. Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User acceptance of computer technology: a comparison of two theoretical models. Manag. Sci. 35(8), 982–1003 (1989)

    Article  Google Scholar 

  46. Gal, H.C.B., Tursunbayeva, A.: 3T framework for AI adoption in Human Resource Management: A Strategic Assessment Tool of Talent, Trust, and Technology. In: ITAIS 2022 Proceedings, vol. 28 (2022)

    Google Scholar 

  47. Nilsen, P., et al.: A framework to guide implementation of AI in health care: protocol for a cocreation research project. JMIR Res. Protoc. 12, e50216 (2023)

    Article  MATH  Google Scholar 

  48. Blolcheva, P., Valchev, E.: Roadmap for risk management integration using AI. J. Risk Control, 13–28 (2022)

    Google Scholar 

  49. Arlinghaus, T., Kus, K., Behne, A. Teuteberg, F.: How to overcome the barriers of AI adoption in healthcare: a multi-stakeholder analysis. In: Proceedings of the 26th Pacific Asia Conference on Information Systems (PACIS 2022) (2022)

    Google Scholar 

  50. El-Deeb, A.: AI adoption: why the software industry is slow to go past the hype? SIGSOFT Softw. Eng. Notes 47, 16–17 (2022)

    Article  MATH  Google Scholar 

  51. Ismail, A., Thakkar, D., Madhiwalla, N., Kumar, N.: Public health calls for/with AI: an ethnographic perspective. Proc. ACM Hum.-Comput. Interact. 7(CSCW2), 1–26 (2023)

    Google Scholar 

  52. Lee, Y.S., Kim, T., Choi, S., Kim, W.: When does AI pay off? AI-adoption intensity, complementary investments, and R &D strategy. Technovation 118, 102590 (2022)

    Google Scholar 

  53. Stecher, P., Pohl, M., Turowski, K.: Enterprise architecture’s effects on organizations’ ability to adopt artificial intelligence - a resource-based perspective. In: Proceedings of the 28th European Conference on Information Systems (ECIS), An Online AIS Conference (2020)

    Google Scholar 

  54. Tjondronegoro, D., Yuwono, E., Richards, B., Green, D., Hatakka, S.: Responsible AI implementation: A human-centered framework for accelerating the innovation process (2022). arXiv preprint arXiv:2209.07076

  55. Vom Brocke, J., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R., Cleven, A.: Reconstructing the giant: on the importance of rigour in documenting the literature search process. ECIS. Verona. In: 17th European Conference on Information Systems (ECIS) (2009)

    Google Scholar 

  56. Xiao, Yu., Watson, M.: Guidance on conducting a systematic literature review. J. Plan. Educ. Res. 39(1), 93–112 (2019)

    Article  MATH  Google Scholar 

  57. Meuser, Nagel, U.: Das Experteninterview konzeptionelle Grundlagen und methodische Anlage, pp. 465–479. VS Verlag für Sozialwissenschaften (2009)

    Google Scholar 

  58. Jöhnk, J., Weißert, M., Wyrtki, K.: Ready or not, AI comes-an interview study of organizational AI readiness factors. Bus. Inf. Syst. Eng. 63(1), 5–20 (2021)

    Article  Google Scholar 

  59. Groopman, J.: AI readiness: five areas businesses must prepare for success in artificial intelligence. Kaleido Insights (2018). http://www.kaleidoinsights.com/wpcontent/uploads/2018/08/Report_07.18_rev6sample.pdf. Accessed 17 Feb 2024

  60. Intel: The AI readiness model (2018). https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ai-readiness-model-whitepaper.pdf. Accessed 20 Feb 2024

  61. Jacobides, M.G., Brusoni, S., Candelon, F.: The evolutionary dynamics of the artificial intelligence ecosystem. Strateg. Sci. 6(4), 412–435 (2021)

    Article  MATH  Google Scholar 

  62. Rana, R., Staron, M., Hansson, J., Nilsson, M., Meding, W.: A framework for adoption of machine learning in industry for software defect prediction. In: 2014 9th International Conference on Software Engineering and Applications (ICSOFT-EA), pp. 383–392 (2014)

    Google Scholar 

  63. Kordon, A.: Applied artificial intelligence-based systems as competitive advantage. In: 2020 IEEE 10th International Conference on Intelligent Systems (IS), pp. 6–18 (2020)

    Google Scholar 

  64. Yildirim, N., et al.: How experienced designers of enterprise applications engage AI as a design material. In: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, CHI ’22. Association for Computing Machinery (2022)

    Google Scholar 

  65. Schäfer, C., Lemmer, K., Samy Kret, K., Ylinen, M., Mikalef, P., Niehaves, B. Truth or Dare? How can we influence the adoption of artificial intelligence in municipalities?. In: Proceedings of the 54th Hawaii International Conference on System Sciences (2021)

    Google Scholar 

  66. Herremans, D.: AIstrom-a roadmap for developing a successful AI strategy. IEEE Access 9, 155826–155838 (2021)

    Article  MATH  Google Scholar 

  67. Alsheibani, S.A., Messom, C., Cheung, Y., Alhosni, M.: Reimagining the strategic management of artificial intelligence: five recommendations for business leaders. In: AMCIS 2020 Proceedings (2020)

    Google Scholar 

  68. Agrawal, A.G.A., Gans, J.S.: Artificial intelligence adoption and system-wide change. J. Econ. Manag. Strateg. (2023)

    Google Scholar 

  69. Wamba-Taguimdje, S.-L., Wamba, S.F., Kamdjoug, J.R.K., Wanko, C.E.T.: Influence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects. Bus. Process Manag. J. 26(7), 1893–1924 (2020)

    Google Scholar 

  70. Jürgen Kai-Uwe Brock and Florian von Wangenheim: Demystifying ai: What digital transformation leaders can teach you about realistic artificial intelligence. Calif. Manage. Rev. 61(4), 110–134 (2019)

    Article  Google Scholar 

  71. Lu, X., Wijayaratna, K., Huang, Y., Qiu, A.: Ai-enabled opportunities and transformation challenges for SMEs in the post-pandemic era: a review and research agenda. Front. Publ. Health 10 (2022)

    Google Scholar 

  72. Alshawi, M.: Rethinking IT in Construction and Engineering: Organisational Readiness, Taylor & Francis, New York (2007)

    Google Scholar 

  73. Sweeney, D., Nair, S., Cormican, K., An exploratory analysis: Scaling AI-based industry 4.0 projects in the medical device industry. Procedia Comput. Sci. 219, 759–766 (2023)

    Article  Google Scholar 

  74. Kelley, S.: Employee perceptions of the effective adoption of AI principles: JBE. J. Bus. Ethics 178(4), 871–893 (2022)

    Article  MATH  Google Scholar 

  75. Windl, M., Feger, S.S., Zijlstra, L., Schmidt, A., Wozniak, P.W.: It is not always discovery time: four pragmatic approaches in designing AI systems. CHI ’22. Association for Computing Machinery (2022)

    Google Scholar 

  76. Kaplan, A., Haenlein, M.: Rulers of the world, unite! the challenges and opportunities of artificial intelligence. Bus. Horiz. 63(1), 37–50 (2020)

    Article  MATH  Google Scholar 

  77. Brunnbauer, M., Piller, G., Rothlauf, F.: idea-AI: Developing a Method for the Systematic Identification of AI Use Cases. In: AMCIS (2021)

    Google Scholar 

  78. Eitle, V., Buxmann, P.: Cultural differences in machine learning adoption: an international comparison between Germany and the united states. In: European Conference on Information Systems (2020)

    Google Scholar 

  79. Carter, L., Liu, D., Cantrell, C.: Exploring the intersection of the digital divide and artificial intelligence: a hermeneutic literature review. AIS Trans. Hum.-Comput. Interact. 12(4), 253–275 (2020)

    Article  MATH  Google Scholar 

  80. Chui, C.K., Lin, S.-B., Zhang, B., Zhou, D.-X.: Realization of spatial sparseness by deep ReLU nets with massive data. IEEE Trans. Neural Netw. Learn. Syst. 33(1), 229–243 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  81. Monah, S.R., et al.: Data governance functions to support responsible data stewardship in pediatric radiology research studies using artificial intelligence. Pediatr. Radiol. 52(11), 2111–2119 (2022)

    Article  MATH  Google Scholar 

  82. Janssen, M., Brous, P., Estevez, E., Barbosa, L.S., Janowski, T.: Data governance: organizing data for trustworthy artificial intelligence. Gov. Inf. Q. 37(3), 101493 (2020)

    Article  Google Scholar 

  83. Huang, S., Siddarth, D.: Generative AI and the digital commons. arXiv (2023)

    Google Scholar 

  84. Luisa, K., Wunderlich, N., Beck, R.: Artificial Intelligence for the financial services industry: what challenges organizations to succeed. In: Proceedings of the 52nd Hawaii International Conference on System Sciences (2019)

    Google Scholar 

  85. Tominc, P., Oreški, D., Rožman, M.: Artificial intelligence and agility-based model for successful project implementation and company competitiveness. Information 14(6), 337 (2023)

    Article  MATH  Google Scholar 

  86. Nurski, L.: AI adoption in the public sector: a case study. Technical report, Bruegel (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emir Kučević .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kučević, E., Grünewald, F., Schanz, N. (2024). Towards a Simplified AI Adoption Framework: Success Factors for the Implementation of Artificial Intelligence Information Systems. In: Degen, H., Ntoa, S. (eds) HCI International 2024 – Late Breaking Papers. HCII 2024. Lecture Notes in Computer Science, vol 15382. Springer, Cham. https://doi.org/10.1007/978-3-031-76827-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-76827-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-76826-2

  • Online ISBN: 978-3-031-76827-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics