Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Integrating HCI Datasets in Project-Based Machine Learning Courses: A College-Level Review and Case Study

  • Conference paper
  • First Online:
HCI International 2024 – Late Breaking Papers (HCII 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15382))

Included in the following conference series:

  • 147 Accesses

Abstract

This study explores the integration of real-world machine learning (ML) projects using human-computer interfaces (HCI) datasets in college-level courses to enhance both teaching and learning experiences. Employing a comprehensive literature review, course websites analysis, and a detailed case study, the research identifies best practices for incorporating HCI datasets into project-based ML education. Key findings demonstrate increased student engagement, motivation, and skill development through hands-on projects, while instructors benefit from effective tools for teaching complex concepts. The study also addresses challenges such as data complexity and resource allocation, offering recommendations for future improvements. These insights provide a valuable framework for educators aiming to bridge the gap between theoretical knowledge and practical application in ML education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://faculty.cs.gwu.edu/xiaodongqu/.

References

  1. Abood, H.G.: E-learning applications in engineering and the project-based learning vs problem-based learning styles: a critical & comparative study. Eng. Technol. J. 37(4), 391–396 (2019)

    Article  MATH  Google Scholar 

  2. Alfredo, R., et al.: Human-centred learning analytics and AI in education: a systematic literature review. Comput. Educ. Artif. Intell. 100215 (2024)

    Google Scholar 

  3. An, S., Bhat, G., Gumussoy, S., Ogras, U.: Transfer learning for human activity recognition using representational analysis of neural networks. ACM Trans. Comput. Healthc. 4(1), 1–21 (2023)

    Article  Google Scholar 

  4. An, S., Tuncel, Y., Basaklar, T., Ogras, U.Y.: A survey of embedded machine learning for smart and sustainable healthcare applications. In: Pasricha, S., Shafique, M. (eds.) Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing, pp. 127–150. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-40677-5_6

    Chapter  MATH  Google Scholar 

  5. Beckman, K., Coulter, N., Khajenoori, S., Mead, N.R.: Collaborations: closing the industry-academia gap. IEEE Softw. 14(6), 49–57 (1997)

    Article  Google Scholar 

  6. Bennett, B.T.: Teaching artificial intelligence in a multidisciplinary computing environment. J. Comput. Sci. Coll. 33(2), 222–228 (2017)

    MATH  Google Scholar 

  7. Brüngel, R., Rückert, J., Friedrich, C.M.: Project-based learning in a machine learning course with differentiated industrial projects for various computer science master programs. In: 2020 IEEE 32nd Conference on Software Engineering Education and Training (CSEE &T), pp. 1–5. IEEE (2020)

    Google Scholar 

  8. Chen, P., Ding, H., Araki, J., Huang, R.: Explicitly capturing relations between entity mentions via graph neural networks for domain-specific named entity recognition. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pp. 735–742 (2021)

    Google Scholar 

  9. Chen, P., et al.: Hytrel: hypergraph-enhanced tabular data representation learning. In: Advances in Neural Information Processing Systems, vol. 36 (2024)

    Google Scholar 

  10. Daun, M., Salmon, A., Tenbergen, B., Weyer, T., Pohl, K.: Industrial case studies in graduate requirements engineering courses: The impact on student motivation. In: 2014 IEEE 27th Conference on Software Engineering Education and Training (CSEE &T), pp. 3–12. IEEE (2014)

    Google Scholar 

  11. Daun, M., Salmon, A., Weyer, T., Pohl, K., Tenbergen, B.: Project-based learning with examples from industry in university courses: an experience report from an undergraduate requirements engineering course. In: 2016 IEEE 29th International Conference on Software Engineering Education and Training (CSEET), pp. 184–193. IEEE (2016)

    Google Scholar 

  12. Dou, G., Zhou, Z., Qu, X.: Time majority voting, a PC-based EEG classifier for non-expert users. In: Kurosu, M., et al. (eds.) HCII 2022. LNCS, vol. 13519, pp. 415–428. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17618-0_29

    Chapter  Google Scholar 

  13. Gui, S., Song, S., Qin, R., Tang, Y.: Remote sensing object detection in the deep learning era - a review. Remote Sens. 16(2), 327 (2024)

    Article  MATH  Google Scholar 

  14. Huang, L.: Integrating machine learning to undergraduate engineering curricula through project-based learning. In: 2019 IEEE Frontiers in Education Conference (FIE), pp. 1–4. IEEE (2019)

    Google Scholar 

  15. Jiang, C., Hui, B., Liu, B., Yan, D.: Successfully applying lottery ticket hypothesis to diffusion model. arXiv preprint arXiv:2310.18823 (2023)

  16. Kastrati, A., et al.: Eegeyenet: a simultaneous electroencephalography and eye-tracking dataset and benchmark for eye movement prediction. arXiv preprint arXiv:2111.05100 (2021)

  17. Kwan, P.: A college freshman’s guide to machine learning: short and sweet way to introduce machine learning to college freshman. J. Comput. Sci. Coll. 30(1), 36–37 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Lao, N.: Reorienting machine learning education towards tinkerers and ML-engaged citizens. Ph.D. thesis, Massachusetts Institute of Technology Cambridge, MA, USA (2020)

    Google Scholar 

  19. Li, H., et al.: Spherehead: stable 3D full-head synthesis with spherical tri-plane representation. arXiv preprint arXiv:2404.05680 (2024)

  20. Lu, Y., Chen, T., Hao, N., Van Rechem, C., Chen, J., Fu, T.: Uncertainty quantification and interpretability for clinical trial approval prediction. Health Data Sci. 4, 0126 (2024)

    Article  MATH  Google Scholar 

  21. Lu, Y., Sato, K., Wang, J.: Deep learning based multi-label image classification of protest activities. arXiv preprint arXiv:2301.04212 (2023)

  22. Lu, Y., Shen, M., Wang, H., Wang, X., van Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023)

  23. Ma, X.: Traffic performance evaluation using statistical and machine learning methods. Ph.D. thesis, The University of Arizona (2022)

    Google Scholar 

  24. Ma, X., Karimpour, A., Wu, Y.J.: Data-driven transfer learning framework for estimating on-ramp and off-ramp traffic flows. J. Intell. Transp. Syst. 1–14 (2024)

    Google Scholar 

  25. Marques, L.S., Gresse von Wangenheim, C., Hauck, J.C.: Teaching machine learning in school: a systematic mapping of the state of the art. Inform. Educ. 19(2), 283–321 (2020)

    Google Scholar 

  26. Martins, R.M., Gresse Von Wangenheim, C.: Findings on teaching machine learning in high school: a ten-year systematic literature review. Inform. Educ. 22(3), 421–440 (2023)

    Google Scholar 

  27. Miller, E.C., Krajcik, J.S.: Promoting deep learning through project-based learning: a design problem. Disc. Interdisc. Sci. Educ. Res. 1(1), 1–10 (2019)

    MATH  Google Scholar 

  28. Murungi, N.K., Pham, M.V., Dai, X.C., Qu, X.: Empowering computer science students in electroencephalography (EEG) analysis: a review of machine learning algorithms for EEG datasets. In: The 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) (2023)

    Google Scholar 

  29. Ng, D.T.K., Lee, M., Tan, R.J.Y., Hu, X., Downie, J.S., Chu, S.K.W.: A review of AI teaching and learning from 2000 to 2020. Educ. Inf. Technol. 28(7), 8445–8501 (2023)

    Article  MATH  Google Scholar 

  30. Qu, X., Liu, P., Li, Z., Hickey, T.: Multi-class time continuity voting for EEG classification. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 24–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_3

    Chapter  MATH  Google Scholar 

  31. Qu, X., Mei, Q., Liu, P., Hickey, T.: Using EEG to distinguish between writing and typing for the same cognitive task. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 66–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_7

    Chapter  MATH  Google Scholar 

  32. Reddi, V.J., et al.: Widening access to applied machine learning with tinyML. arXiv preprint arXiv:2106.04008 (2021)

  33. Sanusi, I.T., Oyelere, S.S.: Pedagogies of machine learning in k-12 context. In: 2020 IEEE Frontiers in Education Conference (FIE), pp. 1–8. IEEE (2020)

    Google Scholar 

  34. Sanusi, I.T., Oyelere, S.S., Vartiainen, H., Suhonen, J., Tukiainen, M.: A systematic review of teaching and learning machine learning in k-12 education. Educ. Inf. Technol. 28(5), 5967–5997 (2023)

    Article  Google Scholar 

  35. Shaw, M., Herbsleb, J., Ozkaya, I.: Deciding what to design: closing a gap in software engineering education. In: Proceedings of the 27th International Conference on Software Engineering, pp. 607–608 (2005)

    Google Scholar 

  36. Tan, J., Zhang, X., Wu, S., Wang, Y.: State-space model based inverse reinforcement learning for reward function estimation in brain-machine interfaces. In: 2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1–4. IEEE (2023)

    Google Scholar 

  37. Tan, M., Lee, H., Wang, D., Subramonyam, H.: Is a seat at the table enough? Engaging teachers and students in dataset specification for ml in education. Proc. ACM Hum.-Comput. Interact. 8(CSCW1), 1–32 (2024)

    Article  Google Scholar 

  38. Tang, Y., Song, S., Gui, S., Chao, W., Cheng, C., Qin, R.: Active and low-cost hyperspectral imaging for the spectral analysis of a low-light environment. Sensors 23(3), 1437 (2023)

    Article  MATH  Google Scholar 

  39. Van Mechelen, M., et al.: Emerging technologies in k-12 education: a future HCI research agenda. ACM Trans. Comput.-Hum. Interact. 30(3), 1–40 (2023)

    Article  MATH  Google Scholar 

  40. Wang, J., Chang, R., Zhao, Z., Pahwa, R.S.: Robust detection, segmentation, and metrology of high bandwidth memory 3D scans using an improved semi-supervised deep learning approach. Sensors 23(12), 5470 (2023)

    Article  MATH  Google Scholar 

  41. Winzker, M.: Semester structure with time slots for self-learning and project-based learning. In: Proceedings of the 2012 IEEE Global Engineering Education Conference (EDUCON), pp. 1–8. IEEE (2012)

    Google Scholar 

  42. Wong, K., Tomov, S., Dongarra, J.: Project-based research and training in high performance data sciences, data analytics, and machine learning. J. Comput. Sci. Educ. 11(1) (2020)

    Google Scholar 

  43. Yi, L., Qu, X.: Attention-based CNN capturing EEG recording’s average voltage and local change. In: Degen, H., Ntoa, S. (eds.) HCII 2022. LNCS, vol. 13336, pp. 448–459. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05643-7_29

    Chapter  MATH  Google Scholar 

  44. Yunoki, I., Berreby, G., D’Andrea, N., Lu, Y., Qu, X.: Exploring AI music generation: a review of deep learning algorithms and datasets for undergraduate researchers. In: Stephanidis, C., Antona, M., Ntoa, S., Salvendy, G. (eds.) HCII 2023. LNCS, vol. 1958, pp. 102–116. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-49215-0_13

    Chapter  Google Scholar 

  45. Zhang, Z., Tian, R., Ding, Z.: Trep: transformer-based evidential prediction for pedestrian intention with uncertainty. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 3534–3542 (2023)

    Google Scholar 

  46. Zhang, Z., Tian, R., Sherony, R., Domeyer, J., Ding, Z.: Attention-based interrelation modeling for explainable automated driving. IEEE Trans. Intell. Veh. 8(2), 1564–1573 (2022)

    Article  MATH  Google Scholar 

  47. Zhao, S., et al.: Deep learning based CETSA feature prediction cross multiple cell lines with latent space representation. Sci. Rep. 14(1), 1878 (2024)

    Article  MATH  Google Scholar 

  48. Zhao, Z., Zhou, F., Xu, K., Zeng, Z., Guan, C., Zhou, S.K.: Le-UDA: label-efficient unsupervised domain adaptation for medical image segmentation. IEEE Trans. Med. Imaging 42(3), 633–646 (2022)

    Article  MATH  Google Scholar 

  49. Zheng, C., et al.: Charting the future of AI in project-based learning: a co-design exploration with students. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, pp. 1–19 (2024)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qu, X., Key, M., Luo, E., Qiu, C. (2024). Integrating HCI Datasets in Project-Based Machine Learning Courses: A College-Level Review and Case Study. In: Degen, H., Ntoa, S. (eds) HCI International 2024 – Late Breaking Papers. HCII 2024. Lecture Notes in Computer Science, vol 15382. Springer, Cham. https://doi.org/10.1007/978-3-031-76827-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-76827-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-76826-2

  • Online ISBN: 978-3-031-76827-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics