Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards Reliable Drift Detection and Explanation in Text Data

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2024 (IDEAL 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15346))

  • 226 Accesses

Abstract

When delivered to the market, machine learning models face new data which are possibly subject to novel characteristics – a phenomenon known as concept drift. As this might lead to performance degradation, it is necessary to detect such drift and, if required, adapt the model accordingly. While a variety of drift detection and adaptation methods exists for standard vectorial data, a suitable treatment of text data is less researched. In this work we present a novel approach which detects and explains drift in text data based on their representation via transformer embeddings.

In a nutshell, the method generates suitable statistical features from the original distribution and the possibly shifted variation. Based on these representations, drift scores can be assigned to individual data points, allowing a visualization and human-readable characterization of the type of drift.

We demonstrate the approach’s effectiveness in reliably detecting drift in several experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acheampong, F.A., Nunoo-Mensah, H., Chen, W.: Transformer models for text-based emotion detection: a review of BERT-based approaches. Artif. Intell. Rev. 54(8), 5789–5829 (2021)

    Article  Google Scholar 

  2. Berabi, B., He, J., Raychev, V., Vechev, M.: TFix: learning to fix coding errors with a text-to-text transformer. In: International Conference on Machine Learning, pp. 780–791. PMLR (2021)

    Google Scholar 

  3. Bu, L., Alippi, C., Zhao, D.: A PDF-free change detection test based on density difference estimation. IEEE Trans. Neural Netw. Learn. Syst. 29(2), 324–334 (2018). https://doi.org/10.1109/TNNLS.2016.2619909

    Article  MathSciNet  Google Scholar 

  4. Chi, Z., Dong, L., Ma, S., Mao, S.H.X.L., Huang, H., Wei, F.: mT6: multilingual pretrained text-to-text transformer with translation pairs. arXiv preprint arXiv:2104.08692 (2021)

  5. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018). http://arxiv.org/abs/1810.04805

  6. Dongre, P.B., Malik, L.G.: A review on real time data stream classification and adapting to various concept drift scenarios. In: 2014 IEEE International Advance Computing Conference (IACC), pp. 533–537 (2014). https://doi.org/10.1109/IAdCC.2014.6779381

  7. Feldhans, R., et al.: Drift detection in text data with document embeddings. In: Yin, H., et al. (eds.) IDEAL 2021. LNCS, vol. 13113, pp. 107–118. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91608-4_11. ISBN 978-3-030-91608-4

  8. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, H.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46 (2014). https://doi.org/10.1145/2523813

  9. Gama, J.a., Žliobaitundefined, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4) (2014). https://doi.org/10.1145/2523813. ISSN 0360-030

  10. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining explanations: an overview of interpretability of machine learning (2018). https://doi.org/10.1109/DSAA.2018.00018

  11. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13(25), 723–773 (2012). http://jmlr.org/papers/v13/gretton12a.html

  12. Hinder, F., Vaquet, V., Brinkrolf, J., Hammer, B.: Model-based explanations of concept drift. Neurocomputing 555, 126640 (2023). https://doi.org/10.1016/J.NEUCOM.2023.126640

  13. Hu, H., Kantardzic, M., Sethi, T.S.: No free lunch theorem for concept drift detection in streaming data classification: a review. WIREs Data Min. Knowl. Discovery 10(2), e1327 (2020). https://doi.org/10.1002/widm.1327, https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1327

  14. Jain, S., Wallace, B.C.: Attention is not explanation. In: NAACL (2019)

    Google Scholar 

  15. Liu, S., Le, F., Chakraborty, S., Abdelzaher, T.: On exploring attention-based explanation for transformer models in text classification. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 1193–1203 (2021). https://doi.org/10.1109/BigData52589.2021.9671639

  16. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 31(12), 2346–2363 (2019). https://doi.org/10.1109/TKDE.2018.2876857

    Article  Google Scholar 

  17. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. CoRR abs/2004.05785 (2020). https://arxiv.org/abs/2004.05785

  18. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150, Association for Computational Linguistics, Portland (2011). http://www.aclweb.org/anthology/P11-1015

  19. Madaan, N., Manjunatha, A., Nambiar, H., Goel, A., Saha, D., Bedathur, S.: Detail: a tool to automatically detect and analyze drift in language. In: Proceedings of the 35th Conference on Innovative Applications of Artificial Intelligence (AAAI/IAAI) (2023)

    Google Scholar 

  20. Mahajan, D., Tan, C., Sharma, A.: Preserving causal constraints in counterfactual explanations for machine learning classifiers. CoRR abs/1912.03277 (2019). http://arxiv.org/abs/1912.03277

  21. Michel, P., Levy, O., Neubig, G.: Are sixteen heads really better than one? In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf

  22. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual explanations. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, FAT* 2020, pp. 607–617. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3351095.3372850. ISBN 978145036936

  23. Nishida, K., Yamauchi, K.: Detecting concept drift using statistical testing. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS (LNAI), vol. 4755, pp. 264–269. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75488-6_27

    Chapter  Google Scholar 

  24. Phan, L.N., et al.: SciFive: a text-to-text transformer model for biomedical literature. arXiv preprint arXiv:2106.03598 (2021)

  25. Schramowski, P., Friedrich, F., Tauchmann, C., Kersting, K.: Interactively generating explanations for transformer language models. CoRR abs/2110.02058 (2021). https://arxiv.org/abs/2110.02058

  26. Vaswani, A., et al.: Attention is all you need (2017). https://arxiv.org/pdf/1706.03762.pdf

  27. Verma, S., Dickerson, J.P., Hines, K.: Counterfactual explanations for machine learning: a review. CoRR abs/2010.10596 (2020). https://arxiv.org/abs/2010.10596

  28. Wiegreffe, S., Pinter, Y.: Attention is not not explanation. CoRR abs/1908.04626 (2019). http://arxiv.org/abs/1908.04626

  29. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–45, Association for Computational Linguistics (2020). https://www.aclweb.org/anthology/2020.emnlp-demos.6

  30. Yang, L., Kenny, E.M., Ng, T.L.J., Yang, Y., Smyth, B., Dong, R.: Generating plausible counterfactual explanations for deep transformers in financial text classification. CoRR abs/2010.12512 (2020). https://arxiv.org/abs/2010.12512

Download references

Acknowledgments

The authors were supported by SAIL. SAIL is funded by the Ministry of Culture and Science of the State of North Rhine-Westphalia under the grant no NW21-059A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Feldhans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feldhans, R., Hammer, B. (2025). Towards Reliable Drift Detection and Explanation in Text Data. In: Julian, V., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2024. IDEAL 2024. Lecture Notes in Computer Science, vol 15346. Springer, Cham. https://doi.org/10.1007/978-3-031-77731-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77731-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77730-1

  • Online ISBN: 978-3-031-77731-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics