Abstract
This paper presents an in-depth analysis of data from the Alpha Ventus offshore wind farm, emphasizing the identification and detection of anomalies in wind turbine performance. Utilizing real-world data from the RAVE (Research at Alpha Ventus) project, we explore the complexities of offshore wind energy generation, including the effects of wind speed, nacelle position, and environmental factors on turbine behaviour. In this paper, among the various machine learning techniques, we have selected k-nearest neighbours (k-NN), to identify patterns and detect anomalies indicative of potential issues. Our findings demonstrate that some turbines of the wind farm, centrally located, are subject to significant wake effects and operational irregularities. By adjusting the parameters of the k-NN model, we achieved an anomaly detection framework, enhancing the reliability of turbine operation and maintenance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Fraunhofer IWES. RAVE Research Initiative Flyer (2023). https://www.rave-offshore.de. https://doi.org/10.2314/rave.2023.001
Pandit, R., Infield, D., Santos, M.: Accounting for environmental conditions in data-driven wind turbine power models. IEEE Trans. Sustain. Energy 14(1), 168–177 (2022). https://doi.org/10.1109/TSTE.2022.3146820
Maldonado, C.B.G., Penas, M.S., Lopez, M.V.L.: Negative selection and Knuth Morris Pratt algorithm for anomaly detection. IEEE Lat. Am. Trans. 14(3), 1473–147 (2016). https://doi.org/10.1109/TLA.2016.7459644
Chen, Z., Li, H., Liu, X., Zhang, Y., Lei, Z., Shen, B.: Wind farm performance and design: an overview. Energies 10(11), 1904 (2017). https://doi.org/10.3390/en10111904
Müller, K., Reiber, M., Cheng, P.W.: Comparison of measured and simulated structural loads of an offshore wind turbine at alpha ventus. Int. J. Offshore Polar Eng. 26(3), 209–218 (2016). https://doi.org/10.17736/ijope.2016.fvr01
Fraunhofer IWES. RAVE: Research at alpha ventus (2017). https://www.iwes.fraunhofer.de/en/research-projects/current-projects/rave.html. https://doi.org/10.5281/zenodo.3764854
RAVE: Research at alpha ventus. Overview of the Project and Data (2017). https://www.rave-offshore.de/en/start.html. https://doi.org/10.5281/zenodo.3764860
RAVE Data. Data from the alpha ventus Offshore Wind Farm (2013). https://www.rave-offshore.de/en/data.html. https://doi.org/10.5281/zenodo.3764861
Cuéllar, S., Santos, M., Alonso, F., Fabregas, E., Farias, G.: Explainable anomaly detection in spacecraft telemetry. Eng. Appl. Artif. Intell. 133, 108083 (2024). https://doi.org/10.1016/j.engappai.2023.108083
FINO1. Research Platform in the North Sea and the Baltic No. 1. https://www.fino1.de/en/. Accessed 07 July 2024
4C Offshore. AD 5-116 Offshore Wind Turbine (2024). https://www.4coffshore.com
REpower 5M Offshore - 5,08 MW - Wind turbine. https://en.wind-turbine-models.com/turbines/78-repower-5m-offshore
Marcos, D., Gómez-Silva, M.J., Santos, M., & López-González, C.I.: Detección de anomalías en turbinas eólicas: un análisis comparativo. Jornadas de Automática 45 (2024)
Zhou, B., Zhang, Z., Li, G., Yang, D., Santos, M.: Review of key technologies for offshore floating wind power generation. Energies 16(2), 71 (2023). https://doi.org/10.3390/en16020710
Sacie, M., Santos, M., López, R., Pandit, R.: Use of state-of-art machine learning technologies for forecasting offshore wind speed, wave and misalignment to improve wind turbine performance. J. Marine Sci. Eng. 10(7), 93 (2022). https://doi.org/10.3390/jmse10070938
Acknowledgments
This work has been partially supported by project PID2021-123543OB-C21 of Spanish ministry MICIU/AEI/ and FEDER.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Weiss, B., Esteban, S., Santos, M. (2025). Data Analysis and Anomaly Detection in a Wind Farm with k-Nearest Neighbors. In: Julian, V., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2024. IDEAL 2024. Lecture Notes in Computer Science, vol 15347. Springer, Cham. https://doi.org/10.1007/978-3-031-77738-7_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-77738-7_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-77737-0
Online ISBN: 978-3-031-77738-7
eBook Packages: Computer ScienceComputer Science (R0)