Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Data Analysis and Anomaly Detection in a Wind Farm with k-Nearest Neighbors

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2024 (IDEAL 2024)

Abstract

This paper presents an in-depth analysis of data from the Alpha Ventus offshore wind farm, emphasizing the identification and detection of anomalies in wind turbine performance. Utilizing real-world data from the RAVE (Research at Alpha Ventus) project, we explore the complexities of offshore wind energy generation, including the effects of wind speed, nacelle position, and environmental factors on turbine behaviour. In this paper, among the various machine learning techniques, we have selected k-nearest neighbours (k-NN), to identify patterns and detect anomalies indicative of potential issues. Our findings demonstrate that some turbines of the wind farm, centrally located, are subject to significant wake effects and operational irregularities. By adjusting the parameters of the k-NN model, we achieved an anomaly detection framework, enhancing the reliability of turbine operation and maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fraunhofer IWES. RAVE Research Initiative Flyer (2023). https://www.rave-offshore.de. https://doi.org/10.2314/rave.2023.001

  2. Pandit, R., Infield, D., Santos, M.: Accounting for environmental conditions in data-driven wind turbine power models. IEEE Trans. Sustain. Energy 14(1), 168–177 (2022). https://doi.org/10.1109/TSTE.2022.3146820

    Article  Google Scholar 

  3. Maldonado, C.B.G., Penas, M.S., Lopez, M.V.L.: Negative selection and Knuth Morris Pratt algorithm for anomaly detection. IEEE Lat. Am. Trans. 14(3), 1473–147 (2016). https://doi.org/10.1109/TLA.2016.7459644

    Article  Google Scholar 

  4. Chen, Z., Li, H., Liu, X., Zhang, Y., Lei, Z., Shen, B.: Wind farm performance and design: an overview. Energies 10(11), 1904 (2017). https://doi.org/10.3390/en10111904

    Article  Google Scholar 

  5. Müller, K., Reiber, M., Cheng, P.W.: Comparison of measured and simulated structural loads of an offshore wind turbine at alpha ventus. Int. J. Offshore Polar Eng. 26(3), 209–218 (2016). https://doi.org/10.17736/ijope.2016.fvr01

    Article  Google Scholar 

  6. Fraunhofer IWES. RAVE: Research at alpha ventus (2017). https://www.iwes.fraunhofer.de/en/research-projects/current-projects/rave.html. https://doi.org/10.5281/zenodo.3764854

  7. RAVE: Research at alpha ventus. Overview of the Project and Data (2017). https://www.rave-offshore.de/en/start.html. https://doi.org/10.5281/zenodo.3764860

  8. RAVE Data. Data from the alpha ventus Offshore Wind Farm (2013). https://www.rave-offshore.de/en/data.html. https://doi.org/10.5281/zenodo.3764861

  9. Cuéllar, S., Santos, M., Alonso, F., Fabregas, E., Farias, G.: Explainable anomaly detection in spacecraft telemetry. Eng. Appl. Artif. Intell. 133, 108083 (2024). https://doi.org/10.1016/j.engappai.2023.108083

    Article  Google Scholar 

  10. FINO1. Research Platform in the North Sea and the Baltic No. 1. https://www.fino1.de/en/. Accessed 07 July 2024

  11. 4C Offshore. AD 5-116 Offshore Wind Turbine (2024). https://www.4coffshore.com

  12. REpower 5M Offshore - 5,08 MW - Wind turbine. https://en.wind-turbine-models.com/turbines/78-repower-5m-offshore

  13. Marcos, D., Gómez-Silva, M.J., Santos, M., & López-González, C.I.: Detección de anomalías en turbinas eólicas: un análisis comparativo. Jornadas de Automática 45 (2024)

    Google Scholar 

  14. Zhou, B., Zhang, Z., Li, G., Yang, D., Santos, M.: Review of key technologies for offshore floating wind power generation. Energies 16(2), 71 (2023). https://doi.org/10.3390/en16020710

    Article  Google Scholar 

  15. Sacie, M., Santos, M., López, R., Pandit, R.: Use of state-of-art machine learning technologies for forecasting offshore wind speed, wave and misalignment to improve wind turbine performance. J. Marine Sci. Eng. 10(7), 93 (2022). https://doi.org/10.3390/jmse10070938

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by project PID2021-123543OB-C21 of Spanish ministry MICIU/AEI/ and FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bassel Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weiss, B., Esteban, S., Santos, M. (2025). Data Analysis and Anomaly Detection in a Wind Farm with k-Nearest Neighbors. In: Julian, V., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2024. IDEAL 2024. Lecture Notes in Computer Science, vol 15347. Springer, Cham. https://doi.org/10.1007/978-3-031-77738-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77738-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77737-0

  • Online ISBN: 978-3-031-77738-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics