Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Knowledge Graphs for Enhancing Large Language Models in Entity Disambiguation

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2024 (ISWC 2024)

Abstract

Recent advances in Large Language Models (LLMs) have positioned them as a prominent solution for Natural Language Processing tasks. Notably, they can approach these problems in a zero or few-shot manner, thereby eliminating the need for training or fine-tuning task-specific models. However, LLMs face some challenges, including hallucination and the presence of outdated knowledge or missing information from specific domains in the training data. These problems cannot be easily solved by retraining the models with new data as it is a time-consuming and expensive process. To mitigate these issues, Knowledge Graphs (KGs) have been proposed as a structured external source of information to enrich LLMs. With this idea, in this work we use KGs to enhance LLMs for zero-shot Entity Disambiguation (ED). For that purpose, we leverage the hierarchical representation of the entities’ classes in a KG to gradually prune the candidate space as well as the entities’ descriptions to enrich the input prompt with additional factual knowledge. Our evaluation on popular ED datasets shows that the proposed method outperforms non-enhanced and description-only enhanced LLMs, and has a higher degree of adaptability than task-specific models. Furthermore, we conduct an error analysis and discuss the impact of the leveraged KG’s semantic expressivity on the ED performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://openai.com/pricing.

  2. 2.

    https://github.com/gerardponsrecasens/KGLLMs4ED.

References

  1. Abu-Salih, B.: Domain-specific knowledge graphs: a survey. J. Netw. Comput. Appl. 185, 103076 (2021)

    Article  Google Scholar 

  2. Achiam, J., et al.: GPT-4 technical report. arXiv preprint arXiv:2303.08774 (2023)

  3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  4. Ayoola, T., Tyagi, S., Fisher, J., Christodoulopoulos, C., Pierleoni, A.: ReFinED: an efficient zero-shot-capable approach to end-to-end entity linking. In: NAACL (2022)

    Google Scholar 

  5. Baek, J., Aji, A.F., Saffari, A.: Knowledge-augmented language model prompting for zero-shot knowledge graph question answering. In: Proceedings of the First Workshop on Matching From Unstructured and Structured Data (MATCHING 2023) (2023). https://api.semanticscholar.org/CorpusID:260063238

  6. Barba, E., Procopio, L., Navigli, R.: ExtEnD: extractive entity disambiguation. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2478–2488 (2022)

    Google Scholar 

  7. Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901 (2020)

    Google Scholar 

  8. Cucerzan, S.: Large-scale named entity disambiguation based on Wikipedia data. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pp. 708–716 (2007)

    Google Scholar 

  9. De Cao, N., Izacard, G., Riedel, S., Petroni, F.: Autoregressive entity retrieval. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021. OpenReview.net (2021). https://openreview.net/forum?id=5k8F6UU39V

  10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  11. Gabrilovich, E., Ringgaard, M., Subramanya, A.: FACC1: freebase annotation of clueweb corpora, version 1 (release date 2013-06-26, format version 1, correction level 0) (2013)

    Google Scholar 

  12. Guha, R.V., Brickley, D., Macbeth, S.: Schema.org: evolution of structured data on the web. Commun. ACM 59(2), 44–51 (2016)

    Google Scholar 

  13. Guo, Z., Barbosa, D.: Robust named entity disambiguation with random walks. Semantic Web 9(4), 459–479 (2018)

    Article  Google Scholar 

  14. Heist, N., Hertling, S., Ringler, D., Paulheim, H.: Knowledge graphs on the web-an overview. Knowl. Graphs eXplainable Artif. Intell., 3–22 (2020)

    Google Scholar 

  15. Hoffart, J., Seufert, S., Nguyen, D.B., Theobald, M., Weikum, G.: KORE: keyphrase overlap relatedness for entity disambiguation. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 545–554 (2012)

    Google Scholar 

  16. Hoffart, J., et al.: Robust disambiguation of named entities in text. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 782–792 (2011)

    Google Scholar 

  17. Hu, L., Liu, Z., Zhao, Z., Hou, L., Nie, L., Li, J.: A survey of knowledge enhanced pre-trained language models. IEEE Trans. Knowl. Data Eng. (2023)

    Google Scholar 

  18. Ji, Z., et al.: Survey of hallucination in natural language generation. ACM Comput. Surv. 55(12), 1–38 (2023)

    Article  Google Scholar 

  19. Le, P., Titov, I.: Improving entity linking by modeling latent relations between mentions. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, pp. 1595–1604. Association for Computational Linguistics, Melbourne, Australia, July 2018. https://doi.org/10.18653/v1/P18-1148

  20. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880. Association for Computational Linguistics, Online, July 2020. https://doi.org/10.18653/v1/2020.acl-main.703

  21. Lewis, P., et al.: Retrieval-augmented generation for knowledge-intensive NLP tasks. In: Advances in Neural Information Processing Systems, vol. 33, pp. 9459–9474 (2020)

    Google Scholar 

  22. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  23. Logeswaran, L., Chang, M.W., Lee, K., Toutanova, K., Devlin, J., Lee, H.: Zero-shot entity linking by reading entity descriptions. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (2019)

    Google Scholar 

  24. Luo, Y., Yang, Z., Meng, F., Li, Y., Zhou, J., Zhang, Y.: An empirical study of catastrophic forgetting in large language models during continual fine-tuning. CoRR abs/2308.08747 (2023). https://doi.org/10.48550/ARXIV.2308.08747

  25. Milne, D., Witten, I.H.: Learning to link with Wikipedia. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 509–518 (2008)

    Google Scholar 

  26. Mistral AI: Mistral Large (2024). https://mistral.ai/news/mistral-large/

  27. Mulang’, I.O., Singh, K., Prabhu, C., Nadgeri, A., Hoffart, J., Lehmann, J.: Evaluating the impact of knowledge graph context on entity disambiguation models. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 2157–2160 (2020)

    Google Scholar 

  28. Nuzzolese, A.G., Gentile, A.L., Presutti, V., Gangemi, A., Garigliotti, D., Navigli, R.: Open knowledge extraction challenge. In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 3–15. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25518-7_1

    Chapter  Google Scholar 

  29. Nuzzolese, A.G., Gentile, A.L., Presutti, V., Gangemi, A., Meusel, R., Paulheim, H.: The second open knowledge extraction challenge. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, vol. 641, pp. 3–16. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46565-4_1

    Chapter  Google Scholar 

  30. Onoe, Y., Durrett, G.: Fine-grained entity typing for domain independent entity linking. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 8576–8583 (2020)

    Google Scholar 

  31. Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., Wu, X.: Unifying large language models and knowledge graphs: a roadmap. IEEE Trans. Knowl. Data Eng. (2024)

    Google Scholar 

  32. Ratinov, L., Roth, D., Downey, D., Anderson, M.: Local and global algorithms for disambiguation to Wikipedia. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 1375–1384 (2011)

    Google Scholar 

  33. Ristoski, P., Lin, Z., Zhou, Q.: KG-ZESHEL: knowledge graph-enhanced zero-shot entity linking. In: Proceedings of the 11th Knowledge Capture Conference, pp. 49–56 (2021)

    Google Scholar 

  34. Röder, M., Usbeck, R., Hellmann, S., Gerber, D., Both, A.: N\(^3\)-a collection of datasets for named entity recognition and disambiguation in the NLP interchange format. In: LREC, pp. 3529–3533 (2014)

    Google Scholar 

  35. Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: an open multilingual graph of general knowledge. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  36. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, pp. 697–706 (2007)

    Google Scholar 

  37. Sun, J., et al.: Think-on-graph: deep and responsible reasoning of large language model with knowledge graph (2023)

    Google Scholar 

  38. Ayoola, T., Fisher, J., Pierleoni, A.: Improving entity disambiguation by reasoning over a knowledge base. In: NAACL (2022)

    Google Scholar 

  39. Touvron, H., et al.: Llama 2: open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023)

  40. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)

    Article  Google Scholar 

  41. Wen, Y., Wang, Z., Sun, J.: MindMap: knowledge graph prompting sparks graph of thoughts in large language models. In: Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (2024)

    Google Scholar 

  42. Wu, L., Petroni, F., Josifoski, M., Riedel, S., Zettlemoyer, L.: Scalable zero-shot entity linking with dense entity retrieval. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6397–6407. Association for Computational Linguistics, Online, November 2020. https://doi.org/10.18653/v1/2020.emnlp-main.519

  43. Yang, J., et al.: Harnessing the power of LLMs in practice: a survey on ChatGPT and beyond. ACM Trans. Knowl. Discovery Data (2023)

    Google Scholar 

  44. Ding, Y., Zeng, Q., Weninger, T.: ChatEL: entity linking with chatbots. In: COLING-LREC (2024)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Horizon Europe Programme under GA.101093164 (ExtremeXP) and the Spanish Ministerio de Ciencia e Innovación under project PID2020-117191RB-I00/ AEI/10.13039/501100011033 (DOGO4ML). Anna Queralt is a Serra Húnter Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Pons .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pons, G., Bilalli, B., Queralt, A. (2025). Knowledge Graphs for Enhancing Large Language Models in Entity Disambiguation. In: Demartini, G., et al. The Semantic Web – ISWC 2024. ISWC 2024. Lecture Notes in Computer Science, vol 15231. Springer, Cham. https://doi.org/10.1007/978-3-031-77844-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77844-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77843-8

  • Online ISBN: 978-3-031-77844-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics