Abstract
Recent advances in Large Language Models (LLMs) have positioned them as a prominent solution for Natural Language Processing tasks. Notably, they can approach these problems in a zero or few-shot manner, thereby eliminating the need for training or fine-tuning task-specific models. However, LLMs face some challenges, including hallucination and the presence of outdated knowledge or missing information from specific domains in the training data. These problems cannot be easily solved by retraining the models with new data as it is a time-consuming and expensive process. To mitigate these issues, Knowledge Graphs (KGs) have been proposed as a structured external source of information to enrich LLMs. With this idea, in this work we use KGs to enhance LLMs for zero-shot Entity Disambiguation (ED). For that purpose, we leverage the hierarchical representation of the entities’ classes in a KG to gradually prune the candidate space as well as the entities’ descriptions to enrich the input prompt with additional factual knowledge. Our evaluation on popular ED datasets shows that the proposed method outperforms non-enhanced and description-only enhanced LLMs, and has a higher degree of adaptability than task-specific models. Furthermore, we conduct an error analysis and discuss the impact of the leveraged KG’s semantic expressivity on the ED performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abu-Salih, B.: Domain-specific knowledge graphs: a survey. J. Netw. Comput. Appl. 185, 103076 (2021)
Achiam, J., et al.: GPT-4 technical report. arXiv preprint arXiv:2303.08774 (2023)
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52
Ayoola, T., Tyagi, S., Fisher, J., Christodoulopoulos, C., Pierleoni, A.: ReFinED: an efficient zero-shot-capable approach to end-to-end entity linking. In: NAACL (2022)
Baek, J., Aji, A.F., Saffari, A.: Knowledge-augmented language model prompting for zero-shot knowledge graph question answering. In: Proceedings of the First Workshop on Matching From Unstructured and Structured Data (MATCHING 2023) (2023). https://api.semanticscholar.org/CorpusID:260063238
Barba, E., Procopio, L., Navigli, R.: ExtEnD: extractive entity disambiguation. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2478–2488 (2022)
Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901 (2020)
Cucerzan, S.: Large-scale named entity disambiguation based on Wikipedia data. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pp. 708–716 (2007)
De Cao, N., Izacard, G., Riedel, S., Petroni, F.: Autoregressive entity retrieval. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021. OpenReview.net (2021). https://openreview.net/forum?id=5k8F6UU39V
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Gabrilovich, E., Ringgaard, M., Subramanya, A.: FACC1: freebase annotation of clueweb corpora, version 1 (release date 2013-06-26, format version 1, correction level 0) (2013)
Guha, R.V., Brickley, D., Macbeth, S.: Schema.org: evolution of structured data on the web. Commun. ACM 59(2), 44–51 (2016)
Guo, Z., Barbosa, D.: Robust named entity disambiguation with random walks. Semantic Web 9(4), 459–479 (2018)
Heist, N., Hertling, S., Ringler, D., Paulheim, H.: Knowledge graphs on the web-an overview. Knowl. Graphs eXplainable Artif. Intell., 3–22 (2020)
Hoffart, J., Seufert, S., Nguyen, D.B., Theobald, M., Weikum, G.: KORE: keyphrase overlap relatedness for entity disambiguation. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 545–554 (2012)
Hoffart, J., et al.: Robust disambiguation of named entities in text. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 782–792 (2011)
Hu, L., Liu, Z., Zhao, Z., Hou, L., Nie, L., Li, J.: A survey of knowledge enhanced pre-trained language models. IEEE Trans. Knowl. Data Eng. (2023)
Ji, Z., et al.: Survey of hallucination in natural language generation. ACM Comput. Surv. 55(12), 1–38 (2023)
Le, P., Titov, I.: Improving entity linking by modeling latent relations between mentions. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, pp. 1595–1604. Association for Computational Linguistics, Melbourne, Australia, July 2018. https://doi.org/10.18653/v1/P18-1148
Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880. Association for Computational Linguistics, Online, July 2020. https://doi.org/10.18653/v1/2020.acl-main.703
Lewis, P., et al.: Retrieval-augmented generation for knowledge-intensive NLP tasks. In: Advances in Neural Information Processing Systems, vol. 33, pp. 9459–9474 (2020)
Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)
Logeswaran, L., Chang, M.W., Lee, K., Toutanova, K., Devlin, J., Lee, H.: Zero-shot entity linking by reading entity descriptions. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (2019)
Luo, Y., Yang, Z., Meng, F., Li, Y., Zhou, J., Zhang, Y.: An empirical study of catastrophic forgetting in large language models during continual fine-tuning. CoRR abs/2308.08747 (2023). https://doi.org/10.48550/ARXIV.2308.08747
Milne, D., Witten, I.H.: Learning to link with Wikipedia. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 509–518 (2008)
Mistral AI: Mistral Large (2024). https://mistral.ai/news/mistral-large/
Mulang’, I.O., Singh, K., Prabhu, C., Nadgeri, A., Hoffart, J., Lehmann, J.: Evaluating the impact of knowledge graph context on entity disambiguation models. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 2157–2160 (2020)
Nuzzolese, A.G., Gentile, A.L., Presutti, V., Gangemi, A., Garigliotti, D., Navigli, R.: Open knowledge extraction challenge. In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 3–15. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25518-7_1
Nuzzolese, A.G., Gentile, A.L., Presutti, V., Gangemi, A., Meusel, R., Paulheim, H.: The second open knowledge extraction challenge. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, vol. 641, pp. 3–16. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46565-4_1
Onoe, Y., Durrett, G.: Fine-grained entity typing for domain independent entity linking. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 8576–8583 (2020)
Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., Wu, X.: Unifying large language models and knowledge graphs: a roadmap. IEEE Trans. Knowl. Data Eng. (2024)
Ratinov, L., Roth, D., Downey, D., Anderson, M.: Local and global algorithms for disambiguation to Wikipedia. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 1375–1384 (2011)
Ristoski, P., Lin, Z., Zhou, Q.: KG-ZESHEL: knowledge graph-enhanced zero-shot entity linking. In: Proceedings of the 11th Knowledge Capture Conference, pp. 49–56 (2021)
Röder, M., Usbeck, R., Hellmann, S., Gerber, D., Both, A.: N\(^3\)-a collection of datasets for named entity recognition and disambiguation in the NLP interchange format. In: LREC, pp. 3529–3533 (2014)
Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: an open multilingual graph of general knowledge. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)
Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, pp. 697–706 (2007)
Sun, J., et al.: Think-on-graph: deep and responsible reasoning of large language model with knowledge graph (2023)
Ayoola, T., Fisher, J., Pierleoni, A.: Improving entity disambiguation by reasoning over a knowledge base. In: NAACL (2022)
Touvron, H., et al.: Llama 2: open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023)
Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)
Wen, Y., Wang, Z., Sun, J.: MindMap: knowledge graph prompting sparks graph of thoughts in large language models. In: Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (2024)
Wu, L., Petroni, F., Josifoski, M., Riedel, S., Zettlemoyer, L.: Scalable zero-shot entity linking with dense entity retrieval. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6397–6407. Association for Computational Linguistics, Online, November 2020. https://doi.org/10.18653/v1/2020.emnlp-main.519
Yang, J., et al.: Harnessing the power of LLMs in practice: a survey on ChatGPT and beyond. ACM Trans. Knowl. Discovery Data (2023)
Ding, Y., Zeng, Q., Weninger, T.: ChatEL: entity linking with chatbots. In: COLING-LREC (2024)
Acknowledgements
This work is supported by the Horizon Europe Programme under GA.101093164 (ExtremeXP) and the Spanish Ministerio de Ciencia e Innovación under project PID2020-117191RB-I00/ AEI/10.13039/501100011033 (DOGO4ML). Anna Queralt is a Serra Húnter Fellow.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pons, G., Bilalli, B., Queralt, A. (2025). Knowledge Graphs for Enhancing Large Language Models in Entity Disambiguation. In: Demartini, G., et al. The Semantic Web – ISWC 2024. ISWC 2024. Lecture Notes in Computer Science, vol 15231. Springer, Cham. https://doi.org/10.1007/978-3-031-77844-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-77844-5_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-77843-8
Online ISBN: 978-3-031-77844-5
eBook Packages: Computer ScienceComputer Science (R0)