Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Survey on Anomaly Detection with Few-Shot Learning

  • Conference paper
  • First Online:
Cognitive Computing - ICCC 2024 (ICCC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15426))

Included in the following conference series:

  • 70 Accesses

Abstract

The primary objective of anomaly detection is to identify abnormal or unusual patterns within a dataset, where the number of normal samples typically exceeds that of abnormal samples. Due to the scarcity of labeled abnormal samples, traditional methods face challenges when dealing with anomaly detection. To overcome these limitations, few-shot learning has emerged as a promising solution. By leveraging a limited number of labeled anomaly samples, few-shot learning enables the construction of models that enhance anomaly detection performance and generalization. This paper provides a comprehensive investigation of anomaly detection, covering its definition, fundamental principles, methods, and challenges. Furthermore, it introduces few-shot learning as a solution and explores its principles, applications, and technical categorization, including meta-learning, transfer learning, generative models, prototypical learning, and siamese networks. The paper explores the utilization of few-shot learning in anomaly detection across diverse data types This paper delves into significance across different domains. Additionally, it addresses the challenges faced by few-shot learning in the field of anomaly detection and proposes future directions for development. This comprehensive analysis aims to provide profound insights and guidance for prospective research and application in anomaly detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tian, Yu., Maicas, G., Pu, L.Z.C.T., Singh, R., Verjans, J.W., Carneiro, G.: Few-shot anomaly detection for polyp frames from colonoscopy. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 274–284. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_27

  2. Sato, K., Nakata, S., Matsubara, T., Uehara, K.: Few-shot anomaly detection using deep generative models for grouped data. IEICE Trans. Inf. Syst. 105(2), 436–440 (2022)

    Article  Google Scholar 

  3. Sureshan, S., Das, D.: Few-shot learning based anomaly detection in security applications. In: Proceedings of the 6th Joint International Conference on Data Science & Management of Data (10th ACM IKDD CODS and 28th COMAD), pp. 295–296 (2023)

    Google Scholar 

  4. Lindemann, B., Maschler, B., Sahlab, N., Weyrich, M.: A survey on anomaly detection for technical systems using lstm networks. Comput. Ind. 131, 103498 (2021)

    Article  Google Scholar 

  5. Thudumu, S., Branch, P., Jin, J., Singh, J.J.: A comprehensive survey of anomaly detection techniques for high dimensional big data. J. Big Data 7(1), 1–30 (2020). https://doi.org/10.1186/s40537-020-00320-x

    Article  Google Scholar 

  6. Wang, Z.M., Tian, J.Y., Qin, J., Fang, H., Chen, L.M.: A few-shot learning-based siamese capsule network for intrusion detection with imbalanced training data. Computational intelligence and neuroscience 2021 (2021)

    Google Scholar 

  7. Wang, H., Ni, Q., Wang, J., Li, H., Ni, F., Wang, H., Yan, L.: Existence identifications of unobserved paths in graph-based social networks. World Wide Web 24, 157–173 (2021)

    Article  Google Scholar 

  8. Zhu, D., Ma, Y., Liu, Y.: DeepAD: A Joint Embedding Approach for Anomaly Detection on Attributed Networks. In: Krzhizhanovskaya, V.V., Závodszky, G., Lees, M.H., Dongarra, J.J., Sloot, P.M.A., Brissos, S., Teixeira, J. (eds.) ICCS 2020. LNCS, vol. 12138, pp. 294–307. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50417-5_22

  9. Li, Y., Huang, X., Li, J., Du, M., Zou, N.: Specae: spectral autoencoder for anomaly detection in attributed networks. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 2233–2236 (2019)

    Google Scholar 

  10. Li, D., Chen, D., Jin, B., Shi, L., Goh, J., Ng, S.K.: Mad-gan: multivariate anomaly detection for time series data with generative adversarial networks. In: International Conference on Artificial Neural Networks, pp. 703–716. Springer (2019)

    Google Scholar 

  11. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  12. Wang, X., Jin, B., Du, Y., Cui, P., Tan, Y., Yang, Y.: One-class graph neural networks for anomaly detection in attributed networks. Neural Comput. Appl. 33(18), 12073–12085 (2021). https://doi.org/10.1007/s00521-021-05924-9

    Article  Google Scholar 

  13. Cai, L., Chen, Z., Luo, C., Gui, J., Ni, J., Li, D., Chen, H.: Structural temporal graph neural networks for anomaly detection in dynamic graphs. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3747–3756 (2021)

    Google Scholar 

  14. Ding, K., Li, J., Agarwal, N., Liu, H.: Inductive anomaly detection on attributed networks. In: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pp. 1288–1294 (2021)

    Google Scholar 

  15. Tian, S., et al.: Sad: Semi-supervised anomaly detection on dynamic graphs. arXiv preprint arXiv:2305.13573 (2023)

  16. Zhang, S., Ye, F., Wang, B., Habetler, T.G.: Few-shot bearing anomaly detection based on model-agnostic meta-learning. arXiv preprint arXiv:2007.12851 (2020)

  17. Lu, Y., Yu, F., Reddy, M.K.K., Wang, Y.: Few-shot scene-adaptive anomaly detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 125–141. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_8

  18. Hong, Y., Shi, C., Chen, J., Wang, H., Wang, D.: Multitask asynchronous metalearning for few-shot anomalous node detection in dynamic networks. IEEE Trans. Comput. Soc. Syst., 1–12 (2024)

    Google Scholar 

  19. Ding, K., Zhou, Q., Tong, H., Liu, H.: Few-shot network anomaly detection via cross-network meta-learning. In: Proceedings of the Web Conference 2021, pp. 2448–2456 (2021)

    Google Scholar 

  20. Huang, C., Guan, H., Jiang, A., Zhang, Y., Spratling, M., Wang, Y.F.: Registration based few-shot anomaly detection. In: European Conference on Computer Vision, pp. 303–319. Springer (2022)

    Google Scholar 

  21. Xu, X., Ding, K., Chen, C., Shu, K.: Metagad: Learning to meta transfer for few-shot graph anomaly detection. arXiv preprint arXiv:2305.10668 (2023)

  22. Zheng, Y., et al.: From unsupervised to few-shot graph anomaly detection: a multi-scale contrastive learning approach. arXiv preprint arXiv:2202.05525 (2022)

  23. Salahuddin, S.A., Hansen, S., Gautam, S., Kampffmeyer, M.C., Jenssen, R.: A self-guided anomaly detection-inspired few-shot segmentation network. In: Colour and Visual Computing Symposium (2022)

    Google Scholar 

  24. Wang, Z., Zhou, Y., Wang, R., Lin, T.Y., Shah, A., Lim, S.N.: Few-shot fast-adaptive anomaly detection. Adv. Neural. Inf. Process. Syst. 35, 4957–4970 (2022)

    Google Scholar 

  25. Belton, N., Hagos, M.T., Lawlor, A., Curran, K.M.: Fewsome: One-class few shot anomaly detection with siamese networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2977–2986 (2023)

    Google Scholar 

  26. Sun, G., Liu, Z., Wen, L., Shi, J., Xu, C.: Anomaly crossing: new horizons for video anomaly detection as cross-domain few-shot learning. arXiv preprint arXiv:2112.06320 (2021)

  27. He, M., Wang, X., Zhou, J., Xi, Y., Jin, L., Wang, X.: Deep-feature-based autoencoder network for few-shot malicious traffic detection. Secur. Commun. Networks 2021, 1–13 (2021)

    Google Scholar 

  28. Kale, R., Thing, V.L.: Few-shot weakly-supervised cybersecurity anomaly detection. Comput. Secur. 130, 103194 (2023)

    Article  Google Scholar 

  29. Zhou, X., Liang, W., Shimizu, S., Ma, J., Jin, Q.: Siamese neural network based few-shot learning for anomaly detection in industrial cyber-physical systems. IEEE Trans. Industr. Inf. 17(8), 5790–5798 (2020)

    Article  Google Scholar 

  30. Pang, G., Ding, C., Shen, C., Hengel, A.v.d.: Explainable deep few-shot anomaly detection with deviation networks. arXiv preprint arXiv:2108.00462 (2021)

  31. Sun, H., Huang, Y., Han, L., Zhou, C.: Few-shot detection of anomalies in industrial cyber-physical system via prototypical network and contrastive learning. arXiv preprint arXiv:2302.10601 (2023)

  32. Xie, G., Wang, J., Liu, J., Zheng, F., Jin, Y.: Pushing the limits of fewshot anomaly detection in industry vision: Graphcore. arXiv preprint arXiv:2301.12082 (2023)

  33. Ando, S., Yamamoto, A.: Anomaly detection via few-shot learning on normality. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 275–290. Springer (2022)

    Google Scholar 

  34. Takimoto, H., Seki, J., F. Situju, S., Kanagawa, A.: Anomaly detection using siamese network with attention mechanism for few-shot learning. Appl. Artif. Intell. 36(1), 2094885 (2022)

    Google Scholar 

  35. Gamal, M., Abbas, H.M., Moustafa, N., Sitnikova, E., Sadek, R.A.: Few-shot learning for discovering anomalous behaviors in edge networks. Comput. Mater. Continua 69(2) (2021)

    Google Scholar 

  36. Guo, Q., Zhao, X., Fang, Y., Yang, S., Lin, X., Ouyang, D.: Learning hypersphere for few-shot anomaly detection on attributed networks. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 635–645(2022)

    Google Scholar 

  37. Xu, F., Wang, N., Wen, X., Gao, M., Guo, C., Zhao, X.: Few-shot message-enhanced contrastive learning for graph anomaly detection. arXiv preprint arXiv:2311.10370 (2023)

  38. Wang, H., Cui, Z., Yang, Y., Wang, B., Zhu, L., Zhang, W.: A network enhancement method to identify spurious drug-drug interactions. IEEE/ACM Trans. Comput. Biol. Bioinform., 1–13 (2024)

    Google Scholar 

  39. Wang, H., Qiao, C., Guo, X., Fang, L., Sha, Y., Gong, Z.: Identifying and evaluating anomalous structural change-based nodes in generalized dynamic social networks. ACM Trans. Web 15(4) (June 2021)

    Google Scholar 

  40. Wang, H., Qiao, C.: A nodes’ evolution diversity inspired method to detect anomalies in dynamic social networks. IEEE Trans. Knowl. Data Eng. 32(10), 1868–1880 (2020)

    Article  Google Scholar 

  41. Wang, H., Cui, Z., Liu, S., Ni, Q., Gong, Z.: Evaluating edge credibility in evolving noisy social networks. IEEE Trans. Knowl. Data Eng. 35(11), 11342–11353 (2023)

    Article  Google Scholar 

  42. Wang, H., Gao, Q., Li, H., Wang, H., Yan, L., Liu, G.: A structural evolution-based anomaly detection method for generalized evolving social networks. Comput. J. 65(5) (12 2020) 1189–1199

    Google Scholar 

  43. Wang, H., Wu, J., Hu, W., Wu, X.: Detecting and assessing anomalous evolutionary behaviors of nodes in evolving social networks. ACM Trans. Knowl. Discov. Data 13(1), January 2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J. et al. (2025). A Survey on Anomaly Detection with Few-Shot Learning. In: Xu, R., Chen, H., Wu, Y., Zhang, LJ. (eds) Cognitive Computing - ICCC 2024. ICCC 2024. Lecture Notes in Computer Science, vol 15426. Springer, Cham. https://doi.org/10.1007/978-3-031-77954-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77954-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77953-4

  • Online ISBN: 978-3-031-77954-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics