Abstract
The primary objective of anomaly detection is to identify abnormal or unusual patterns within a dataset, where the number of normal samples typically exceeds that of abnormal samples. Due to the scarcity of labeled abnormal samples, traditional methods face challenges when dealing with anomaly detection. To overcome these limitations, few-shot learning has emerged as a promising solution. By leveraging a limited number of labeled anomaly samples, few-shot learning enables the construction of models that enhance anomaly detection performance and generalization. This paper provides a comprehensive investigation of anomaly detection, covering its definition, fundamental principles, methods, and challenges. Furthermore, it introduces few-shot learning as a solution and explores its principles, applications, and technical categorization, including meta-learning, transfer learning, generative models, prototypical learning, and siamese networks. The paper explores the utilization of few-shot learning in anomaly detection across diverse data types This paper delves into significance across different domains. Additionally, it addresses the challenges faced by few-shot learning in the field of anomaly detection and proposes future directions for development. This comprehensive analysis aims to provide profound insights and guidance for prospective research and application in anomaly detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tian, Yu., Maicas, G., Pu, L.Z.C.T., Singh, R., Verjans, J.W., Carneiro, G.: Few-shot anomaly detection for polyp frames from colonoscopy. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 274–284. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_27
Sato, K., Nakata, S., Matsubara, T., Uehara, K.: Few-shot anomaly detection using deep generative models for grouped data. IEICE Trans. Inf. Syst. 105(2), 436–440 (2022)
Sureshan, S., Das, D.: Few-shot learning based anomaly detection in security applications. In: Proceedings of the 6th Joint International Conference on Data Science & Management of Data (10th ACM IKDD CODS and 28th COMAD), pp. 295–296 (2023)
Lindemann, B., Maschler, B., Sahlab, N., Weyrich, M.: A survey on anomaly detection for technical systems using lstm networks. Comput. Ind. 131, 103498 (2021)
Thudumu, S., Branch, P., Jin, J., Singh, J.J.: A comprehensive survey of anomaly detection techniques for high dimensional big data. J. Big Data 7(1), 1–30 (2020). https://doi.org/10.1186/s40537-020-00320-x
Wang, Z.M., Tian, J.Y., Qin, J., Fang, H., Chen, L.M.: A few-shot learning-based siamese capsule network for intrusion detection with imbalanced training data. Computational intelligence and neuroscience 2021 (2021)
Wang, H., Ni, Q., Wang, J., Li, H., Ni, F., Wang, H., Yan, L.: Existence identifications of unobserved paths in graph-based social networks. World Wide Web 24, 157–173 (2021)
Zhu, D., Ma, Y., Liu, Y.: DeepAD: A Joint Embedding Approach for Anomaly Detection on Attributed Networks. In: Krzhizhanovskaya, V.V., Závodszky, G., Lees, M.H., Dongarra, J.J., Sloot, P.M.A., Brissos, S., Teixeira, J. (eds.) ICCS 2020. LNCS, vol. 12138, pp. 294–307. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50417-5_22
Li, Y., Huang, X., Li, J., Du, M., Zou, N.: Specae: spectral autoencoder for anomaly detection in attributed networks. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 2233–2236 (2019)
Li, D., Chen, D., Jin, B., Shi, L., Goh, J., Ng, S.K.: Mad-gan: multivariate anomaly detection for time series data with generative adversarial networks. In: International Conference on Artificial Neural Networks, pp. 703–716. Springer (2019)
Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12
Wang, X., Jin, B., Du, Y., Cui, P., Tan, Y., Yang, Y.: One-class graph neural networks for anomaly detection in attributed networks. Neural Comput. Appl. 33(18), 12073–12085 (2021). https://doi.org/10.1007/s00521-021-05924-9
Cai, L., Chen, Z., Luo, C., Gui, J., Ni, J., Li, D., Chen, H.: Structural temporal graph neural networks for anomaly detection in dynamic graphs. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3747–3756 (2021)
Ding, K., Li, J., Agarwal, N., Liu, H.: Inductive anomaly detection on attributed networks. In: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pp. 1288–1294 (2021)
Tian, S., et al.: Sad: Semi-supervised anomaly detection on dynamic graphs. arXiv preprint arXiv:2305.13573 (2023)
Zhang, S., Ye, F., Wang, B., Habetler, T.G.: Few-shot bearing anomaly detection based on model-agnostic meta-learning. arXiv preprint arXiv:2007.12851 (2020)
Lu, Y., Yu, F., Reddy, M.K.K., Wang, Y.: Few-shot scene-adaptive anomaly detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 125–141. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_8
Hong, Y., Shi, C., Chen, J., Wang, H., Wang, D.: Multitask asynchronous metalearning for few-shot anomalous node detection in dynamic networks. IEEE Trans. Comput. Soc. Syst., 1–12 (2024)
Ding, K., Zhou, Q., Tong, H., Liu, H.: Few-shot network anomaly detection via cross-network meta-learning. In: Proceedings of the Web Conference 2021, pp. 2448–2456 (2021)
Huang, C., Guan, H., Jiang, A., Zhang, Y., Spratling, M., Wang, Y.F.: Registration based few-shot anomaly detection. In: European Conference on Computer Vision, pp. 303–319. Springer (2022)
Xu, X., Ding, K., Chen, C., Shu, K.: Metagad: Learning to meta transfer for few-shot graph anomaly detection. arXiv preprint arXiv:2305.10668 (2023)
Zheng, Y., et al.: From unsupervised to few-shot graph anomaly detection: a multi-scale contrastive learning approach. arXiv preprint arXiv:2202.05525 (2022)
Salahuddin, S.A., Hansen, S., Gautam, S., Kampffmeyer, M.C., Jenssen, R.: A self-guided anomaly detection-inspired few-shot segmentation network. In: Colour and Visual Computing Symposium (2022)
Wang, Z., Zhou, Y., Wang, R., Lin, T.Y., Shah, A., Lim, S.N.: Few-shot fast-adaptive anomaly detection. Adv. Neural. Inf. Process. Syst. 35, 4957–4970 (2022)
Belton, N., Hagos, M.T., Lawlor, A., Curran, K.M.: Fewsome: One-class few shot anomaly detection with siamese networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2977–2986 (2023)
Sun, G., Liu, Z., Wen, L., Shi, J., Xu, C.: Anomaly crossing: new horizons for video anomaly detection as cross-domain few-shot learning. arXiv preprint arXiv:2112.06320 (2021)
He, M., Wang, X., Zhou, J., Xi, Y., Jin, L., Wang, X.: Deep-feature-based autoencoder network for few-shot malicious traffic detection. Secur. Commun. Networks 2021, 1–13 (2021)
Kale, R., Thing, V.L.: Few-shot weakly-supervised cybersecurity anomaly detection. Comput. Secur. 130, 103194 (2023)
Zhou, X., Liang, W., Shimizu, S., Ma, J., Jin, Q.: Siamese neural network based few-shot learning for anomaly detection in industrial cyber-physical systems. IEEE Trans. Industr. Inf. 17(8), 5790–5798 (2020)
Pang, G., Ding, C., Shen, C., Hengel, A.v.d.: Explainable deep few-shot anomaly detection with deviation networks. arXiv preprint arXiv:2108.00462 (2021)
Sun, H., Huang, Y., Han, L., Zhou, C.: Few-shot detection of anomalies in industrial cyber-physical system via prototypical network and contrastive learning. arXiv preprint arXiv:2302.10601 (2023)
Xie, G., Wang, J., Liu, J., Zheng, F., Jin, Y.: Pushing the limits of fewshot anomaly detection in industry vision: Graphcore. arXiv preprint arXiv:2301.12082 (2023)
Ando, S., Yamamoto, A.: Anomaly detection via few-shot learning on normality. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 275–290. Springer (2022)
Takimoto, H., Seki, J., F. Situju, S., Kanagawa, A.: Anomaly detection using siamese network with attention mechanism for few-shot learning. Appl. Artif. Intell. 36(1), 2094885 (2022)
Gamal, M., Abbas, H.M., Moustafa, N., Sitnikova, E., Sadek, R.A.: Few-shot learning for discovering anomalous behaviors in edge networks. Comput. Mater. Continua 69(2) (2021)
Guo, Q., Zhao, X., Fang, Y., Yang, S., Lin, X., Ouyang, D.: Learning hypersphere for few-shot anomaly detection on attributed networks. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 635–645(2022)
Xu, F., Wang, N., Wen, X., Gao, M., Guo, C., Zhao, X.: Few-shot message-enhanced contrastive learning for graph anomaly detection. arXiv preprint arXiv:2311.10370 (2023)
Wang, H., Cui, Z., Yang, Y., Wang, B., Zhu, L., Zhang, W.: A network enhancement method to identify spurious drug-drug interactions. IEEE/ACM Trans. Comput. Biol. Bioinform., 1–13 (2024)
Wang, H., Qiao, C., Guo, X., Fang, L., Sha, Y., Gong, Z.: Identifying and evaluating anomalous structural change-based nodes in generalized dynamic social networks. ACM Trans. Web 15(4) (June 2021)
Wang, H., Qiao, C.: A nodes’ evolution diversity inspired method to detect anomalies in dynamic social networks. IEEE Trans. Knowl. Data Eng. 32(10), 1868–1880 (2020)
Wang, H., Cui, Z., Liu, S., Ni, Q., Gong, Z.: Evaluating edge credibility in evolving noisy social networks. IEEE Trans. Knowl. Data Eng. 35(11), 11342–11353 (2023)
Wang, H., Gao, Q., Li, H., Wang, H., Yan, L., Liu, G.: A structural evolution-based anomaly detection method for generalized evolving social networks. Comput. J. 65(5) (12 2020) 1189–1199
Wang, H., Wu, J., Hu, W., Wu, X.: Detecting and assessing anomalous evolutionary behaviors of nodes in evolving social networks. ACM Trans. Knowl. Discov. Data 13(1), January 2019
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, J. et al. (2025). A Survey on Anomaly Detection with Few-Shot Learning. In: Xu, R., Chen, H., Wu, Y., Zhang, LJ. (eds) Cognitive Computing - ICCC 2024. ICCC 2024. Lecture Notes in Computer Science, vol 15426. Springer, Cham. https://doi.org/10.1007/978-3-031-77954-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-77954-1_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-77953-4
Online ISBN: 978-3-031-77954-1
eBook Packages: Computer ScienceComputer Science (R0)