Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Data Science Approach for Predicting Soccer Passes Using Positional Data

  • Conference paper
  • First Online:
Information Integration and Web Intelligence (iiWAS 2024)

Abstract

Data-driven approaches for evaluating tactical team behavior in soccer are nowadays a widespread method in sport analytics. The large amount of data collections enables experts to generate a deep tactical understanding and extract valuable measurements out of team-performances. However, these approaches are often limited in their comprehensibility and applicability for domain experts. Additionally, defensive behaviour in soccer is notoriously difficult to measure and has been receiving less attention in research and practice compared to measuring offensive performance. The motivation of this research is the design, implementation and validation of data science algorithms, that predict tactical motion of defending players after an occurring event of a pass, one of the most common events in soccer matches. The focus is the establishment and validation of different sets of rules, which simulate the movement behavior of the defending team, based on domain knowledge. The approach provides a high level of applicability for domain experts, in order to use and combine variable predefined rules for prediction, simulation and evaluation of different tactical approaches of defensive behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Name blanked due to confidentiality.

References

  1. Baladram, M.S., Koike, A., Yamada, K.D.: Introduction to supervised machine learning for data science. Interdisc. Inf. Sci. 26(1), 87–121 (2020)

    Google Scholar 

  2. Bischofberger, J., Baca, A., Schikuta, E.: Event detection in football: improving the reliability of match analysis. PLoS ONE 19(4), 1–17 (2024). https://doi.org/10.1371/journal.pone.0298107

    Article  Google Scholar 

  3. Cichy, R.M., Kaiser, D.: Deep neural networks as scientific models. Trends Cogn. Sci. 23(4), 305–317 (2019)

    Article  Google Scholar 

  4. Decroos, T., Van Haaren, J., Davis, J.: Automatic discovery of tactics in spatio-temporal soccer match data. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 223–232 (2018)

    Google Scholar 

  5. Fujii, K.: Data-driven analysis for understanding team sports behaviors. J. Rob. Mechatron. 33(3), 505–514 (2021)

    Article  Google Scholar 

  6. Goes, F.R., Kempe, M., Meerhoff, L.A., Lemmink, K.A.: Not every pass can be an assist: a data-driven model to measure pass effectiveness in professional soccer matches. Big Data 7(1), 57–70 (2019)

    Article  Google Scholar 

  7. Hucaljuk, J., Rakipović, A.: Predicting football scores using machine learning techniques. In: 2011 Proceedings of the 34th International Convention MIPRO, pp. 1623–1627 (2011)

    Google Scholar 

  8. Jiang, H.: Machine Learning Fundamentals: A Concise Introduction. Cambridge University Press (2021)

    Google Scholar 

  9. Kempe, M., Vogelbein, M., Nopp, S.: The cream of the crop: analysing FIFA world cup 2014 and Germany’s title run (2016)

    Google Scholar 

  10. Le, H., Carr, P., Yue, Y., Lucey, P.: Data-driven ghosting using deep imitation learning. In: MIT Sloan Sports Analytics Conference (2017)

    Google Scholar 

  11. Link, D., Lang, S., Seidenschwarz, P.: Real time quantification of dangerousity in soccer using spatiotemporal tracking data. In: International Association of Computer Science in Sport (IACSS) Conference, p. 12 (2016)

    Google Scholar 

  12. Liu, H., Gegov, A., Stahl, F.: Categorization and construction of rule based systems. In: Mladenov, V., Jayne, C., Iliadis, L. (eds.) EANN 2014. CCIS, vol. 459, pp. 183–194. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11071-4_18

    Chapter  Google Scholar 

  13. Mathwarehouse.com: Pythagorean Theorem. https://www.mathwarehouse.com/geometry/triangles/how-to-use-the-pythagorean-theorem.php. Accessed 16 May 2023

  14. Metrica-Sports: Metrica sports sample data (2021). https://github.com/metrica-sports/sample-data/commit/e706dd506b360d69d9d123d5b8026e7294b13996. Accessed 18 May 2023

  15. Shah, R., Romijnders, R.: Applying deep learning to basketball trajectories. arXiv preprint arXiv:1608.03793 (2016)

  16. Spearman, W.: Beyond expected goals. In: Proceedings of the 12th MIT Sloan Sports Analytics Conference, pp. 1–17 (2018)

    Google Scholar 

  17. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press (2018)

    Google Scholar 

  18. Thabtah, F., Zhang, L., Abdelhamid, N.: NBA game result prediction using feature analysis and machine learning. Ann. Data Sci. 6(1), 103–116 (2019)

    Article  Google Scholar 

  19. Wang, J., Fox, I., Skaza, J., Linck, N., Singh, S., Wiens, J.: The advantage of doubling: a deep reinforcement learning approach to studying the double team in the NBA. arXiv preprint arXiv:1803.02940 (2018)

  20. Wang, Q., Zhu, H., Hu, W., Shen, Z., Yao, Y.: Discerning tactical patterns for professional soccer teams: an enhanced topic model with applications. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2197–2206 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Schikuta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eigenrauch, S., Bischofberger, J., Baca, A., Schikuta, E. (2025). A Data Science Approach for Predicting Soccer Passes Using Positional Data. In: Delir Haghighi, P., Greguš, M., Kotsis, G., Khalil, I. (eds) Information Integration and Web Intelligence. iiWAS 2024. Lecture Notes in Computer Science, vol 15342. Springer, Cham. https://doi.org/10.1007/978-3-031-78090-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78090-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78089-9

  • Online ISBN: 978-3-031-78090-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics