Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Utilizing Deep Incomplete Classifiers to Implement Semantic Clustering for Killer Whale Photo Identification Data

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Abstract

Machine-assisted photo identification processes require significant amounts of data for each member of a population of interest but offer the possibility to alleviate a significant amount of manual effort. Gathering such data is time consuming and opportunistic, leading to imbalanced datasets ill-suited for traditional machine (deep) learning efforts. Incomplete classifiers, trained on a subset of classes in a population, can be initially useful to identify the most commonly seen individuals. This study investigates the use of incomplete classifiers trained on a subset of often-observed individual killer whales to generate latent space representations of the larger population containing unseen individuals. These semantically relevant representations are subsequently clustered to investigate the efficacy of this method as a secondary identification mechanism. This method proves to be robust to a significant amount of noise while being able to isolate individuals unknown to the classifier when applying limited expert knowledge to the approximate size of the population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bendale, A., Boult, T.E.: Towards open set deep networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1563–1572 (2016). https://doi.org/10.1109/CVPR.2016.173

  2. Bergler, C., et al.: FIN-PRINT a fully-automated multi-stage deep-learning-based framework for the individual recognition of killer whales. Sci. Rep. 11, 1–16 (2021). https://doi.org/10.1038/s41598-021-02506-6

    Article  Google Scholar 

  3. Bigg, M., Olesiuk, P., Ellis, G.M., Ford, J., Balcomb, K.C.: Social organization and genealogy of resident killer whales (orcinus orca) in the coastal waters of British Columbia and washington state. Report Int. Whaling Commission 12, 383–405 (1990)

    Google Scholar 

  4. Bogucki, R., Cygan, M., Khan, C.B., Klimek, M., Milczek, J.K., Mucha, M.: Applying deep learning to right whale photo identification. Conserv. Biol. 33(3), 676–684 (Nov 2018). https://doi.org/10.1111/cobi.13226

  5. Caruana, R., Elhawary, M., Nguyen, N., Smith, C.: Meta clustering. In: Sixth International Conference on Data Mining (ICDM’06). pp. 107–118 (2006). https://doi.org/10.1109/ICDM.2006.103

  6. Ford, J.K., Ellis, G.M., Balcomb, K.C.: Killer whales: the natural history and genealogy of Orcinus orca in British Columbia and Washington. UBC press (1994)

    Google Scholar 

  7. Gómez Blas, N., de Mingo López, L.F., Arteta Albert, A., Martínez Llamas, J.: Image classification with convolutional neural networks using gulf of maine humpback whale catalog. Electronics 9(5) (2020). https://doi.org/10.3390/electronics9050731, https://www.mdpi.com/2079-9292/9/5/731

  8. Hassen, M., Chan, P.K.: Learning a neural-network-based representation for open set recognition, pp. 154–162. https://doi.org/10.1137/1.9781611976236.18, https://epubs.siam.org/doi/abs/10.1137/1.9781611976236.18

  9. Hu, M., You, F.: Research on animal image classification based on transfer learning. In: Proceedings of the 2020 4th International Conference on Electronic Information Technology and Computer Engineering, pDp. 756–761. EITCE ’20, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3443467.3443849

  10. Jin, X., et al.: Meta clustering learning for large-scale unsupervised person re-identification. In: Proceedings of the 30th ACM International Conference on Multimedia. ACM (Oct 2022). https://doi.org/10.1145/3503161.3547900, https://doi.org/10.1145/3503161.3547900

  11. Kirillov, A., et al.: Segment anything (2023). https://doi.org/10.48550/ARXIV.2304.02643, https://arxiv.org/abs/2304.02643

  12. Konovalov, D.A., Hillcoat, S., Williams, G., Birtles, R.A., Gardiner, N., Curnock, M.I.: Individual minke whale recognition using deep learning convolutional neural networks. J. Geosci. Environ. Protect. 6, 25–36 (2018)

    Article  Google Scholar 

  13. Maglietta, R., et al.: DolFin: an innovative digital platform for studying risso’s dolphins in the northern ionian sea (north-eastern central mediterranean). Sci. Reports 8(1) (Nov 2018). https://doi.org/10.1038/s41598-018-35492-3

  14. Patton, P.T., et al.: A deep learning approach to photo–identification demonstrates high performance on two dozen cetacean species. Methods in Ecology and Evolution (Jul 2023). https://doi.org/10.1111/2041-210x.14167

  15. Renò, V., et al.: A sift-based software system for the photo-identification of the risso’s dolphin. Ecol. Inform. 50, 95–101 (2019). https://doi.org/10.1016/j.ecoinf.2019.01.006, https://www.sciencedirect.com/science/article/pii/S1574954118301377

  16. Rosenberg, A., Hirschberg, J.: V-measure: A conditional entropy-based external cluster evaluation measure. In: Eisner, J. (ed.) EMNLP-CoNLL 2007, Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, June 28-30, 2007, Prague, Czech Republic, pp. 410–420. ACL (2007), https://aclanthology.org/D07-1043/

  17. Scheirer, W.J., de Rezende Rocha, A., Sapkota, A., Boult, T.E.: Toward open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1757–1772 (2013). https://doi.org/10.1109/TPAMI.2012.256

    Article  Google Scholar 

  18. Thompson, J.W., et al.: finfindr: Automated recognition and identification of marine mammal dorsal fins using residual convolutional neural networks. Marine Mammal Sci. 38(1), 139–150 (2022). https://doi.org/10.1111/mms.12849, https://onlinelibrary.wiley.com/doi/abs/10.1111/mms.12849

  19. Towers, J.R. et al.: Photo-identification catalogue, population status, and distribution of bigg’s killer whales known from coastal waters of British Columbia, Canada. Canadian Tech. Report Fisheries Aquatic Sci. 3311 (07 2019)

    Google Scholar 

  20. Wang, H., Zhu, X., Xiang, T., Gong, S.: Towards unsupervised open-set person re-identification. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 769–773 (2016). https://doi.org/10.1109/ICIP.2016.7532461

  21. Wheeldon, A., Serb, A.: A study on the clusterability of latent representations in image pipelines. Front. Neuroinform. 17 (Feb 2023). https://doi.org/10.3389/fninf.2023.1074653, https://doi.org/10.3389/fninf.2023.1074653

  22. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision - ECCV 2014, pp. 818–833. Springer International Publishing, Cham (2014)

    Chapter  Google Scholar 

  23. Zhang, Y., Kang, B., Hooi, B., Yan, S., Feng, J.: Deep long-tailed learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (2023)

    Google Scholar 

  24. Zheng, X., Kellenberger, B., Gong, R., Hajnsek, I., Tuia, D.: Self-supervised pretraining and controlled augmentation improve rare wildlife recognition in uav images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, pp. 732–741 (October 2021)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ellyne Hamran with Ocean Sounds e.V. for the Norwegian killer whale photos used as comparison in this work, Lorenzo von Fersen with the Nuremburg Zoo for allowing the use of the bottlenose dolphin photos, and Gary Sutton and Tasli Shaw for their efforts in annotating the Bigg’s killer whale data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Barnhill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barnhill, A., Towers, J.R., Nöth, E., Maier, A., Bergler, C. (2025). Utilizing Deep Incomplete Classifiers to Implement Semantic Clustering for Killer Whale Photo Identification Data. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15301. Springer, Cham. https://doi.org/10.1007/978-3-031-78107-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78107-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78106-3

  • Online ISBN: 978-3-031-78107-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics