Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

GL-TSVM: A Robust and Smooth Twin Support Vector Machine with Guardian Loss Function

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15302))

Included in the following conference series:

  • 93 Accesses

Abstract

Twin support vector machine (TSVM), a variant of support vector machine (SVM), has garnered significant attention due to its 3/4 times lower computational complexity compared to SVM. However, due to the utilization of the hinge loss function, TSVM is sensitive to outliers or noise. To remedy it, we introduce the guardian loss (G-loss), a novel loss function distinguished by its asymmetric, bounded, and smooth characteristics. We then fuse the proposed G-loss function into the TSVM and yield a robust and smooth classifier termed GL-TSVM. Further, to adhere to the structural risk minimization (SRM) principle and reduce overfitting, we incorporate a regularization term into the objective function of GL-TSVM. To address the optimization challenges of GL-TSVM, we devise an efficient iterative algorithm. The experimental analysis on UCI and KEEL datasets substantiates the effectiveness of the proposed GL-TSVM in comparison to the baseline models. Moreover, to showcase the efficacy of the proposed GL-TSVM in the biomedical domain, we evaluated it on the breast cancer (BreaKHis) and schizophrenia datasets. The outcomes strongly demonstrate the competitiveness of the proposed GL-TSVM against the baseline models. The supplementary file, along with the source code for the proposed GL-TSVM model, is publicly accessible at https://github.com/mtanveer1/GL-TSVM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akhtar, M., Tanveer, M., Arshad, M.: RoBoSS: a robust, bounded, sparse, and smooth loss function for supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. (2024). https://doi.org/10.1109/TPAMI.2024.3465535

  2. Akhtar, M., Tanveer, M., Arshad, M.: HawkEye: advancing robust regression with bounded, smooth, and insensitive loss function. arXiv preprint arXiv:2401.16785

  3. Akhtar, M., Tanveer, M., Arshad, M., and for the Alzheimer’s Disease Neuroimaging Initiative: Advancing supervised learning with the wave loss function: a robust and smooth approach. Pattern Recognit., 110637 (2024). https://doi.org/10.1016/j.patcog.2024.110637

  4. Borah, P., Gupta, D.: Functional iterative approaches for solving support vector classification problems based on generalized Huber loss. Neural Comput. Appl. 32(13), 9245–9265 (2020)

    Article  Google Scholar 

  5. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Article  Google Scholar 

  6. Derrac, J., Garcia, S., Sanchez, L., Herrera, F.: KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Mult. Valued Logic Soft Comput. 17, 255–287 (2015)

    Google Scholar 

  7. Dua, D., Graff, C.: UCI machine learning repository 7(1), 62 (2017). http://archive.ics.uci.edu/ml

  8. Ganaie, M.A., Tanveer, M., for the Alzheimer’s Disease Neuroimaging Initiative: KNN weighted reduced universum twin SVM for class imbalance learning. Knowl.-Based Syst. 245, 108578 (2022)

    Google Scholar 

  9. Ganaie, M.A., Tanveer, M., Lin, C.T.: Large-scale fuzzy least squares twin SVMs for class imbalance learning. IEEE Trans. Fuzzy Syst. 30(11), 4815–4827 (2022). https://doi.org/10.1109/TFUZZ.2022.3161729

    Article  Google Scholar 

  10. Gautam, C., et al.: Minimum variance-embedded deep kernel regularized least squares method for one-class classification and its applications to biomedical data. Neural Netw. 123, 191–216 (2020)

    Article  Google Scholar 

  11. Jayadeva, Khemchandani, R., Chandra, S.: Twin support vector machines for pattern classification. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 905–910 (2007)

    Google Scholar 

  12. Kumar, M.A., Gopal, M.: Least squares twin support vector machines for pattern classification. Expert Syst. Appl. 36(4), 7535–7543 (2009)

    Article  Google Scholar 

  13. Kumari, A., Akhtar, M., Shah, R., Tanveer, M.: Support matrix machine: a review. arXiv preprint arXiv:2310.19717 (2023)

  14. Kumari, A., Akhtar, M., Tanveer, M., Arshad, M.: Diagnosis of breast cancer using flexible pinball loss support vector machine. Appl. Soft Comput., 111454 (2024). https://doi.org/10.1016/j.asoc.2024.111454

  15. Malik, A.K., Ganaie, M.A., Tanveer, M., Suganthan, P.N., for the Alzheimer’s Disease Neuroimaging Initiative: Alzheimer’s disease diagnosis via intuitionistic fuzzy random vector functional link network. IEEE Trans. Comput. Soc. Syst., 1–12 (2022). https://doi.org/10.1109/TCSS.2022.3146974

  16. Quadir, A., Tanveer, M.: Granular ball twin support vector machine with pinball loss function. IEEE Trans. Comput. Soc. Syst., 1–10 (2024). https://doi.org/10.1109/TCSS.2024.3411395

  17. Quadir, A., Akhtar, M., Tanveer, M.: Enhancing multiview synergy: robust learning by exploiting the wave loss function with consensus and complementarity principles. arXiv preprint arXiv:2408.06819 (2024)

  18. Shao, Y., Zhang, C., Wang, X., Deng, N.: Improvements on twin support vector machines. IEEE Trans. Neural Networks 22(6), 962–968 (2011)

    Article  Google Scholar 

  19. Si, Q., Yang, Z., Ye, J.: Symmetric LINEX loss twin support vector machine for robust classification and its fast iterative algorithm. Neural Netw. 168, 143–160 (2023)

    Article  Google Scholar 

  20. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63(7), 1455–1462 (2015)

    Article  Google Scholar 

  21. Tanveer, M.: Robust and sparse linear programming twin support vector machines. Cogn. Comput. 7(1), 137–149 (2015)

    Article  Google Scholar 

  22. Tanveer, M., Gautam, C., Suganthan, P.N.: Comprehensive evaluation of twin SVM based classifiers on UCI datasets. Appl. Soft Comput. 83, 105617 (2019). https://doi.org/10.1016/j.asoc.2019.105617

    Article  Google Scholar 

  23. Tanveer, M., Sharma, A., Suganthan, P.N.: General twin support vector machine with pinball loss function. Inf. Sci. 494, 311–327 (2019)

    Article  MathSciNet  Google Scholar 

  24. Tanveer, M., Ganaie, M.A., Bhattacharjee, A., Lin, C.T.: Intuitionistic fuzzy weighted least squares twin SVMs. IEEE Trans. Cybern. 53(7), 4400–4409 (2022)

    Article  Google Scholar 

  25. Tanveer, M., Rajani, T., Rastogi, R., Shao, Y., Ganaie, M.A.: Comprehensive review on twin support vector machines. Ann. Oper. Res., 1–46 (2022). https://doi.org/10.1007/s10479-022-04575-w

  26. Tanveer, M., Tiwari, A., Choudhary, R., Ganaie, M.A.: Large-scale pinball twin support vector machines. Mach. Learn. (13), 1–24 (2021). https://doi.org/10.1007/s10994-021-06061-z

  27. Wang, Q., Ma, Y., Zhao, K., Tian, Y.: A comprehensive survey of loss functions in machine learning. Ann. Data Sci. 9, 1–26 (2020)

    Google Scholar 

  28. Zheng, X., Zhang, L., Yan, L.: CTSVM: a robust twin support vector machine with correntropy-induced loss function for binary classification problems. Inf. Sci. 559, 22–45 (2021)

    Google Scholar 

Download references

Acknowledgment

This project receives support from the Science and Engineering Research Board through the Mathematical Research Impact-Centric Support (MATRICS) scheme, with Grant No. MTR/2021/000787. Additionally, Mushir Akhtar’s research fellowship is provided by the Council of Scientific and Industrial Research (CSIR), New Delhi, under Grant No. 09/1022(13849)/2022-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tanveer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akhtar, M., Tanveer, M., Arshad, M. (2025). GL-TSVM: A Robust and Smooth Twin Support Vector Machine with Guardian Loss Function. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15302. Springer, Cham. https://doi.org/10.1007/978-3-031-78166-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78166-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78165-0

  • Online ISBN: 978-3-031-78166-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics