Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Tract-RLFormer: A Tract-Specific RL Policy Based Decoder-Only Transformer Network

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15313))

Included in the following conference series:

  • 79 Accesses

Abstract

Fiber tractography is a cornerstone of neuroimaging, enabling the detailed mapping of the brain’s white matter pathways through diffusion MRI. This is crucial for understanding brain connectivity and function, making it a valuable tool in neurological applications. Despite its importance, tractography faces challenges due to its complexity and susceptibility to false positives, misrepresenting vital pathways. To address these issues, recent strategies have shifted towards deep learning, utilizing supervised learning, which depends on precise ground truth, or reinforcement learning, which operates without it. In this work, we propose Tract-RLFormer, a network utilizing both supervised and reinforcement learning, in a two-stage policy refinement process that markedly improves the accuracy and generalizability across various data-sets. By employing a tract-specific approach, our network directly delineates the tracts of interest, bypassing the traditional segmentation process. Through rigorous validation on datasets such as TractoInferno, HCP, and ISMRM-2015, our methodology demonstrates a leap forward in tractography, showcasing its ability to accurately map the brain’s white matter tracts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avants, B.B., et al.: Advanced normalization tools. Insight J 2(365), 1–35 (2009)

    Google Scholar 

  2. Basser, P.J.: Fiber-tractography via diffusion tensor MRI (DT-MRI). In: Proceedings of the 6th Annual Meeting ISMRM, Sydney, Australia, vol. 1226, p. 14 (1998)

    Google Scholar 

  3. Benou, I., Riklin Raviv, T.: Deeptract: A probabilistic deep learning framework for white matter fiber tractography. In: MICCAI: Shenzhen, China, October 13–17, 2019, pp. 626–635. Springer (2019)

    Google Scholar 

  4. Berman, J.I., Chung, S., Mukherjee, P., Hess, C.P., Han, E.T., Henry, R.G.: Probabilistic streamline q-ball tractography using the residual bootstrap. Neuroimage 39(1), 215–222 (2008)

    Article  Google Scholar 

  5. Chen, L., et al.: Decision transformer: reinforcement learning via sequence modeling. NeurIPS 34, 15084–15097 (2021)

    Google Scholar 

  6. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  7. Essayed, W.I., Zhang, F., Unadkat, P., Cosgrove, G.R., Golby, A.J., O’Donnell, L.J.: White matter tractography for neurosurgical planning: A topography-based review of the current state of the art. NeuroImage: Clinical 15, 659–672 (2017)

    Google Scholar 

  8. Fillard, P., Poupon, C., Mangin, J.F.: A novel global tractography algorithm based on an adaptive spin glass model. In: MICCAI, pp. 927–934. Springer (2009)

    Google Scholar 

  9. Fujimoto, S., Hoof, H., Meger, D.: Addressing function approximation error in actor-critic methods. In: ICML, pp. 1587–1596. PMLR (2018)

    Google Scholar 

  10. Girard, G., et al.: Towards quantitative connectivity analysis: reducing tractography biases. Neuroimage 98, 266–278 (2014)

    Article  Google Scholar 

  11. Jumper, J., Evans, R., Pritzel, A., Green, T., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021)

    Google Scholar 

  12. Maier-Hein, K.H., et al.: The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8(1), 1349 (2017)

    Article  Google Scholar 

  13. Neher, P.F., Côté, M.A., Houde, J.C., Descoteaux, M., Maier-Hein, K.H.: Fiber tractography using machine learning. Neuroimage 158, 417–429 (2017)

    Article  Google Scholar 

  14. Neher, P.F., et al.: A machine learning based approach to fiber tractography using classifier voting. In: MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part I 18, pp. 45–52. Springer (2015)

    Google Scholar 

  15. Poulin, P., et al.: Learn to track: deep learning for tractography. In: MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part I 20, pp. 540–547. Springer (2017)

    Google Scholar 

  16. Poulin, P., et al.: Tractoinferno-a large-scale, open-source, multi-site database for machine learning DMRI tractography. Sci. Data 9(1), 725 (2022)

    Article  Google Scholar 

  17. Rheault, F.: Population average atlas for recobundlesx (2023). https://doi.org/10.5281/zenodo.7950602

  18. Rheault, F., et al.: Bundle-specific tractography with incorporated anatomical and orientational priors. Neuroimage 186, 382–398 (2019)

    Article  Google Scholar 

  19. St-Onge, E., Garyfallidis, E., Collins, D.L.: Fast streamline search: an exact technique for diffusion MRI tractography. Neuroinformatics 20(4), 1093–1104 (2022)

    Article  Google Scholar 

  20. Théberge, A., Desrosiers, C., Boré, A., Descoteaux, M., Jodoin, P.M.: What matters in reinforcement learning for tractography. MIA 93, 103085 (2024)

    Google Scholar 

  21. Théberge, A., et al.: Track-to-learn: a general framework for tractography with deep reinforcement learning. MIA 72, 102093 (2021)

    Google Scholar 

  22. Van Essen, D.C., et al.: The human connectome project: a data acquisition perspective. Neuroimage 62(4), 2222–2231 (2012)

    Article  Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  24. Wegmayr, V., Buhmann, J.M.: Entrack: probabilistic spherical regression with entropy regularization for fiber tractography. Int. J. Comput. Vis. 129(3), 656–680 (2021)

    Article  MathSciNet  Google Scholar 

  25. Wegmayr, V., Giuliari, G., Holdener, S., Buhmann, J.: Data-driven fiber tractography with neural networks. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), pp. 1030–1033. IEEE (2018)

    Google Scholar 

  26. Yeh, F.C., et al.: Population-averaged atlas of the macroscale human structural connectome and its network topology. Neuroimage 178, 57–68 (2018)

    Article  Google Scholar 

  27. Zhou, H., Zhang, et al.: Informer: beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 11106–11115 (2021)

    Google Scholar 

Download references

Acknowledgment

This research was supported by SERB Core Research Grant Project No: CRG/ 2020/005492, IIT Mandi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankita Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Joshi, A. et al. (2025). Tract-RLFormer: A Tract-Specific RL Policy Based Decoder-Only Transformer Network. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15313. Springer, Cham. https://doi.org/10.1007/978-3-031-78201-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78201-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78200-8

  • Online ISBN: 978-3-031-78201-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics