Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Video Analysis Engine for Predicting Effectiveness

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15322))

Included in the following conference series:

  • 158 Accesses

Abstract

In the realm of digital education, the growing use of short-form online videos, coupled with innovative generative AI methods, has dramatically expanded the production of didactic academic videos. This shift, however, underscores a critical question - how to ascertain the "effectiveness" of these videos for student learning? It is essential to devise a classification mechanism that filters videos for clarity, comprehensibility, and their capacity to meet student learning objectives. The automated evaluation of these learning videos holds substantial implications for student academic performance. Accordingly, this paper presents a novel supervised-learning-based approach, predicated on video feature analysis, to predict the effectiveness of K-12 science and mathematics videos. Our method integrates diverse features such as image, spoken text, and audio, among other hand-crafted elements, to accurately assess video effectiveness. We conduct an evaluation of our approach using a comprehensive dataset comprised of 3,134 short-form academic videos. The results demonstrate robust performance, with the system achieving an accuracy of 76.1% and an F1 score of 80.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://ai.meta.com/llama/

  2. 2.

    https://falconllm.tii.ae/

  3. 3.

    https://huggingface.co/WizardLM/WizardLM-7B-V1.0

References

  1. Agrawal, A., Paepcke, A.: The stanford moocposts dataset. Accessed: Dec 15, 2020 (2014)

    Google Scholar 

  2. Ali, M.: PyCaret: An open source, low-code machine learning library in Python (April 2020), https://www.pycaret.org, pyCaret version 1.0.0

  3. Bawden, D., Robinson, L.: Information overload: An overview (2020)

    Google Scholar 

  4. Bhanji, F., Gottesman, R., de Grave, W., Steinert, Y., Winer, L.R.: The retrospective pre-post: A practical method to evaluate learning from an educational program. Acad. Emerg. Med. 19(2), 189–194 (2012)

    Article  Google Scholar 

  5. Boateng, R., Boateng, S.L., Awuah, R.B., Ansong, E., Anderson, A.B.: Videos in learning in higher education: assessing perceptions and attitudes of students at the university of ghana. Smart Learning Environments 3, 1–13 (2016)

    Article  Google Scholar 

  6. Brame, C.J., et al.: Effective educational videos (2015)

    Google Scholar 

  7. Chassiakos, Y., Radesky, J., Christakis, D., Moreno, M., Cross, C., Hill, D., et al.: Children and adolescents and digital media. pediatrics [internet]. 2016 nov 1 [cited 2021 jun 9]; 138 (5)

    Google Scholar 

  8. Chung, D., Chen, Y., Meng, Y.: Perceived information overload and intention to discontinue use of short-form video: The mediating roles of cognitive and psychological factors. Behav. Sci. 13(1), 50 (2023)

    Article  Google Scholar 

  9. Clavié, B., Gal, K.: Edubert: Pretrained deep language models for learning analytics. arXiv preprint arXiv:1912.00690 (2019)

  10. Cohen, I., Huang, Y., Chen, J., Benesty, J., Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation coefficient. Noise reduction in speech processing pp. 1–4 (2009)

    Google Scholar 

  11. Davis, G.A.: Using a retrospective pre-post questionnaire to determine program impact. (2002)

    Google Scholar 

  12. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  13. Flesch, R.: A new readability yardstick. J. Appl. Psychol. 32(3), 221 (1948)

    Article  Google Scholar 

  14. Garzotto, F.: Investigating the educational effectiveness of multiplayer online games for children. In: Proceedings of the 6th international conference on Interaction design and children. pp. 29–36 (2007)

    Google Scholar 

  15. Gemmeke, J.F., Ellis, D.P., Freedman, D., Jansen, A., Lawrence, W., Moore, R.C., Plakal, M., Ritter, M.: Audio set: An ontology and human-labeled dataset for audio events. In: 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP). pp. 776–780. IEEE (2017)

    Google Scholar 

  16. Gunning, R.: The fog index after twenty years. J. Bus. Commun. 6(2), 3–13 (1969)

    Article  MathSciNet  Google Scholar 

  17. Hershey, S., Chaudhuri, S., Ellis, D.P., Gemmeke, J.F., Jansen, A., Moore, R.C., Plakal, M., Platt, D., Saurous, R.A., Seybold, B., et al.: Cnn architectures for large-scale audio classification. In: 2017 ieee international conference on acoustics, speech and signal processing (icassp). pp. 131–135. IEEE (2017)

    Google Scholar 

  18. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  19. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y.: Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  20. Killen, R.: Differences between students’ and lecturers’ perceptions of factors influencing students’ academic success at university. High. Educ. Res. Dev. 13(2), 199–211 (1994)

    Article  Google Scholar 

  21. Kincaid, J.P., Fishburne Jr, R.P., Rogers, R.L., Chissom, B.S.: Derivation of new readability formulas (automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel (1975)

    Google Scholar 

  22. Lee, S.g., Kim, H., Shin, C., Tan, X., Liu, C., Meng, Q., Qin, T., Chen, W., Yoon, S., Liu, T.Y.: Priorgrad: Improving conditional denoising diffusion models with data-dependent adaptive prior. arXiv preprint arXiv:2106.06406 (2021)

  23. Madeni, F., Horiuchi, S., Iida, M.: Evaluation of a reproductive health awareness program for adolescence in urban tanzania-a quasi-experimental pre-test post-test research. Reprod. Health 8(1), 1–9 (2011)

    Article  Google Scholar 

  24. Marsden, E., Torgerson, C.J.: Single group, pre-and post-test research designs: Some methodological concerns. Oxf. Rev. Educ. 38(5), 583–616 (2012)

    Article  Google Scholar 

  25. Mc Laughlin, G.H.: Smog grading-a new readability formula. J. Read. 12(8), 639–646 (1969)

    Google Scholar 

  26. Michelazzo, M.B., Pastorino, R., Mazzucco, W., Boccia, S.: Distance learning training in genetics and genomics testing for italian health professionals: results of a pre and post-test evaluation. Epidemiology, Biostatistics and Public Health 12(3) (2015)

    Google Scholar 

  27. Pardos, Z., Bergner, Y., Seaton, D., Pritchard, D.: Adapting bayesian knowledge tracing to a massive open online course in edx. In: Educational Data Mining 2013. Citeseer (2013)

    Google Scholar 

  28. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 10684–10695 (2022)

    Google Scholar 

  29. Rosen, L., Samuel, A.: Conquering digital distraction. Harv. Bus. Rev. 93(6), 110–113 (2015)

    Google Scholar 

  30. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  31. Shukor, N.A., Tasir, Z., Van der Meijden, H.: An examination of online learning effectiveness using data mining. Procedia. Soc. Behav. Sci. 172, 555–562 (2015)

    Article  Google Scholar 

  32. Ssemugabi, S., De Villiers, M.: Effectiveness of heuristic evaluation in usability evaluation of e-learning applications in higher education. South African computer journal 2010(45), 26–39 (2010)

    Google Scholar 

  33. Stockwell, B.R., Stockwell, M.S., Cennamo, M., Jiang, E.: Blended learning improves science education. Cell 162(5), 933–936 (2015)

    Article  Google Scholar 

  34. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  35. Webster, J.G., Ksiazek, T.B.: The dynamics of audience fragmentation: Public attention in an age of digital media. J. Commun. 62(1), 39–56 (2012)

    Article  Google Scholar 

Download references

Acknowledgment

The primary author would like to extend thanks to the NLP department at MBZUAI and the department chair Professor Preslav Nakov, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rushil Thareja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thareja, R., Dwivedi, D., Garg, R., Baghel, S., Shukla, J., Mohania, M. (2025). Video Analysis Engine for Predicting Effectiveness. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15322. Springer, Cham. https://doi.org/10.1007/978-3-031-78312-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78312-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78311-1

  • Online ISBN: 978-3-031-78312-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics