Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Domain-Driven Design Representation of Monolith Candidate Decompositions

  • Conference paper
  • First Online:
Enterprise Design, Operations, and Computing (EDOC 2024)

Abstract

Microservice architectures have gained popularity as one of the preferred architectural approaches to develop large-scale systems. Similarly, strategic Domain-Driven Design (DDD) gained traction as the preferred architectural design approach for the development of microservices. However, DDD and its strategic patterns are open-ended by design, leading to a gap between the concepts of DDD and the design of microservices. This gap is especially evident in migration tools that identify microservices from monoliths, where candidate decompositions into microservices provide little in terms of DDD refactoring and visualization. This paper proposes a solution to this problem by extending the operational pipeline of a multi-strategy microservice identification tool, called Mono2Micro, with a DDD modeling tool that provides a language, called Context Mapper DSL (CML), for formalizing the most relevant DDD concepts. The results are validated with a case study by comparing the candidate decompositions resulting from a real-world monolith application with and without CML translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://spring.io/projects/spring-boot.

  2. 2.

    https://quizzes-tutor.tecnico.ulisboa.pt/.

  3. 3.

    https://github.com/socialsoftware/mono2micro.

  4. 4.

    https://github.com/ContextMapper.

  5. 5.

    https://github.com/socialsoftware/mono2micro/tree/master/tools/cml-converter.

References

  1. Abdellatif, M., et al.: A taxonomy of service identification approaches for legacy software systems modernization. J. Syst. Softw. 173, 110868 (2021)

    Article  MATH  Google Scholar 

  2. Abgaz, Y., et al.: Decomposition of monolith applications into microservices architectures: a systematic review. IEEE Trans. Software Eng. 49(8), 4213–4242 (2023). https://doi.org/10.1109/TSE.2023.3287297

    Article  MATH  Google Scholar 

  3. Almeida, J.F., Silva, A.R.: Monolith migration complexity tuning through the application of microservices patterns. In: Jansen, A., Malavolta, I., Muccini, H., Ozkaya, I., Zimmermann, O. (eds.) ECSA 2020. LNCS, vol. 12292, pp. 39–54. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58923-3_3

    Chapter  MATH  Google Scholar 

  4. Andrade, B., Santos, S., Silva, A.R.: A comparison of static and dynamic analysis to identify microservices in monolith systems. In: Tekinerdogan, B., Trubiani, C., Tibermacine, C., Scandurra, P., Cuesta, C.E. (eds.) ECSA 2023. LNCS, pp. 354–361. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-42592-9_25

    Chapter  MATH  Google Scholar 

  5. Correia, J., Rito Silva, A.: Identification of monolith functionality refactorings for microservices migration. Softw. Pract. Exp. 52(12), 2664–2683 (2022). https://doi.org/10.1002/spe.3141

  6. Di Francesco, P., Lago, P., Malavolta, I.: Migrating towards microservice architectures: an industrial survey. In: 2018 IEEE International Conference on Software Architecture (ICSA), pp. 29–2909 (2018). https://doi.org/10.1109/ICSA.2018.00012

  7. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison Wesley, Boston (2003)

    MATH  Google Scholar 

  8. Faria, V., Silva, A.R.: Code vectorization and sequence of accesses strategies for monolith microservices identification. In: Garrigós, I., Murillo Rodríguez, J.M., Wimmer, M. (eds.) ICWE 2023. LNCS, pp. 19–33. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34444-2_2

    Chapter  MATH  Google Scholar 

  9. Ford, N., Richards, M., Sadalage, P., Dehghani, Z.: Software Architecture: The Hard Parts. O’Reilly Media, Inc. (2021)

    Google Scholar 

  10. Fowler, M.: Microservice trade-offs (2015). https://martinfowler.com/articles/microservice-trade-offs.html

  11. Fowler, M.: Monolith first (2015). https://martinfowler.com/bliki/MonolithFirst.html

  12. Haywood, D.: In defence of the monolith (2017). https://www.infoq.com/minibooks/emag-microservices-monoliths/

  13. Hippchen, B., Giessler, P., Steinegger, R., Schneider, M., Abeck, S.: Designing microservice-based applications by using a domain-driven design approach. Int. J. Adv. Softw. 1942–2628(10), 432–445 (2017)

    Google Scholar 

  14. Kapferer, S.: A Modeling Framework for Strategic Domain-driven Design and Service Decomposition. Master’s thesis, University of Applied Sciences of Eastern Switzerland (2020). https://doi.org/10.13140/RG.2.2.22950.68167

  15. Kapferer, S., Zimmermann, O.: Domain-driven service design. In: Dustdar, S. (ed.) SummerSOC 2020. CCIS, vol. 1310, pp. 189–208. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64846-6_11

    Chapter  MATH  Google Scholar 

  16. Kapferer., S., Zimmermann., O.: Domain-specific language and tools for strategic domain-driven design, context mapping and bounded context modeling. In: Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development - MODELSWARD, pp. 299–306. INSTICC, SciTePress (2020). https://doi.org/10.5220/0008910502990306

  17. Kapferer, S., Zimmermann, O.: Domain-driven architecture modeling and rapid prototyping with context mapper. In: Model-Driven Engineering and Software Development, pp. 250–272 (2021). https://doi.org/10.1007/978-3-030-67445-8_11

  18. Le, D.M., Dang, D.H., Nguyen, V.H.: On domain driven design using annotation-based domain specific language. Comput. Lang. Syst. Struct. 54, 199–235 (2018). https://doi.org/10.1016/j.cl.2018.05.001

    Article  MATH  Google Scholar 

  19. Lewis, J., Fowler, M.: Microservices (2014). http://martinfowler.com/articles/microservices.html

  20. Lopes, T., Silva, A.R.: Monolith microservices identification: Towards an extensible multiple strategy tool. In: 2023 IEEE 20th International Conference on Software Architecture Companion (ICSA-C), pp. 111–115 (2023). https://doi.org/10.1109/ICSA-C57050.2023.00034

  21. Lourenço, J., Silva, A.R.: Monolith development history for microservices identification: a comparative analysis. In: 2023 IEEE International Conference on Web Services (ICWS), pp. 50–56 (2023). https://doi.org/10.1109/ICWS60048.2023.00019

  22. Nunes, L., Santos, N., Rito Silva, A.: From a monolith to a microservices architecture: an approach based on transactional contexts. In: Bures, T., Duchien, L., Inverardi, P. (eds.) ECSA 2019. LNCS, vol. 11681, pp. 37–52. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29983-5_3

    Chapter  MATH  Google Scholar 

  23. O’Hanlon, C.: A conversation with Werner Vogels. Queue 4(4), 14–22 (2006). https://doi.org/10.1145/1142055.1142065

    Article  MATH  Google Scholar 

  24. Pawlak, R., Monperrus, M., Petitprez, N., Noguera, C., Seinturier, L.: Spoon: a library for implementing analyses and transformations of java source code. Softw. Pract. Exp. 46, 1155–1179 (2015). https://doi.org/10.1002/spe.2346

  25. Ponce, F., Márquez, G., Astudillo, H.: Migrating from monolithic architecture to microservices: a rapid review. In: 2019 38th International Conference of the Chilean Computer Science Society (SCCC), pp. 1–7 (2019). https://doi.org/10.1109/SCCC49216.2019.8966423

  26. Rademacher, F., Sachweh, S., Zündorf, A.: Towards a UML profile for domain-driven design of microservice architectures. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 230–245. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74781-1_17

    Chapter  MATH  Google Scholar 

  27. Richardson, C.: Developing transactional microservices using aggregates, event sourcing and CQRS. InfoQ (2017). https://www.infoq.com/minibooks/emag-microservices-monoliths/

  28. Santos, N., Rito Silva, A.: A complexity metric for microservices architecture migration. In: 2020 IEEE International Conference on Software Architecture (ICSA), pp. 169–178 (2020). https://doi.org/10.1109/ICSA47634.2020.00024

  29. Santos, S., Silva, A.R.: Microservices identification in monolith systems: functionality redesign complexity and evaluation of similarity measures. J. Web Eng. 21(5), 1543–1582 (2022). https://doi.org/10.13052/jwe1540-9589.2158

  30. Singjai, A., Zdun, U., Zimmermann, O.: Practitioner views on the interrelation of microservice APIS and domain-driven design: a grey literature study based on grounded theory. In: 2021 IEEE 18th International Conference on Software Architecture (ICSA), pp. 25–35 (2021). https://doi.org/10.1109/ICSA51549.2021.00011

  31. Tune, N., Millett, S.: Designing Autonomous Teams and Services. O’Reilly Media, Incorporated (2017)

    Google Scholar 

  32. Vernon, V.: Domain-Driven Design Distilled. Addison-Wesley, Boston (2016)

    MATH  Google Scholar 

  33. Vural, H., Koyuncu, M.: Does domain-driven design lead to finding the optimal modularity of a microservice? IEEE Access 9, 32721–32733 (2021). https://doi.org/10.1109/ACCESS.2021.3060895

    Article  MATH  Google Scholar 

  34. Özkan, O., Önder Babur, van den Brand, M.: Domain-driven design in software development: a systematic literature review on implementation, challenges, and effectiveness (2023). https://doi.org/10.48550/arXiv.2310.01905

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Levezinho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Levezinho, M., Kapferer, S., Zimmermann, O., Silva, A.R. (2025). Domain-Driven Design Representation of Monolith Candidate Decompositions. In: Borbinha, J., Prince Sales, T., Da Silva, M.M., Proper, H.A., Schnellmann, M. (eds) Enterprise Design, Operations, and Computing. EDOC 2024. Lecture Notes in Computer Science, vol 15409. Springer, Cham. https://doi.org/10.1007/978-3-031-78338-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78338-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78337-1

  • Online ISBN: 978-3-031-78338-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics