Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Deep Learning System for Water Pollutant Detection Based on the SENSIPLUS Microsensor

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15323))

Included in the following conference series:

  • 65 Accesses

Abstract

Accurate classification of water pollutants is paramount for safeguarding the environment. This study presents an innovative approach to classifying water pollutants by integrating deep learning algorithms with effective preprocessing techniques. The Sensichips Smart Water Cable Sensor(SCW) facilitates real-time data acquisition for various water pollutants, establishing a robust foundation for comprehensive analysis. SCW utilizes the SENSIPLUS chip, which employs impedance spectroscopy to detect a variety of water-soluble pollutants via an array of sensors. Our research adopts an end-to-end sensor-to-classification framework, leveraging deep neural networks to capture temporal data dynamics. Employing a CNN model with a sliding window approach, our method demonstrates promising results, achieving an average accuracy of 95.78% across ten folds for classifying eight distinct water pollutants. The low-cost IoT-based infrastructure makes this approach scalable and accessible for deployment in water monitoring systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AlZubi, A.A.: Iot-based automated water pollution treatment using machine learning classifiers. Environ. Technol. 45(12), 2299–2307 (2024)

    Article  Google Scholar 

  2. Banerjee, K., Bali, V., Nawaz, N., Bali, S., Mathur, S., Mishra, R.K., Rani, S.: A machine-learning approach for prediction of water contamination using latitude, longitude, and elevation. Water 14(5), 728 (2022)

    Article  Google Scholar 

  3. Bourelly, C., et al.: A preliminary solution for anomaly detection in water quality monitoring. In: 2020 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 410–415 (2020)

    Google Scholar 

  4. Bria, A., Cerro, G., Ferdinandi, M., Marrocco, C., Molinara, M.: An iot-ready solution for automated recognition of water contaminants. Pattern Recogn. Lett. 135, 188–195 (2020)

    Article  Google Scholar 

  5. Charulatha, G., Srinivasalu, S., Uma Maheswari, O., Venugopal, T., Giridharan, L.: Evaluation of ground water quality contaminants using linear regression and artificial neural network models. Arab. J. Geosci. 10, 1–9 (2017)

    Article  Google Scholar 

  6. Dean, S.N., Shriver-Lake, L.C., Stenger, D.A., Erickson, J.S., Golden, J.P., Trammell, S.A.: Machine learning techniques for chemical identification using cyclic square wave voltammetry. Sensors 19(10), 2392 (2019)

    Article  Google Scholar 

  7. Desmet, C., Degiuli, A., Ferrari, C., Romolo, F.S., Blum, L., Marquette, C.: Electrochemical sensor for explosives precursors’ detection in water. Challenges 8(1), 10 (2017)

    Article  Google Scholar 

  8. Dilmi, S., Ladjal, M.: A novel approach for water quality classification based on the integration of deep learning and feature extraction techniques. Chemom. Intell. Lab. Syst. 214, 104329 (2021)

    Article  Google Scholar 

  9. Ferdinandi, M., et al.: A novel smart system for contaminants detection and recognition in water. In: 2019 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 186–191 (2019)

    Google Scholar 

  10. Ferdinandi, M., et al.: A novel smart system for contaminants detection and recognition in water. In: 2019 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 186–191. IEEE (2019)

    Google Scholar 

  11. Flores, V., Bravo, I., Saavedra, M.: Water Quality classification and machine learning model for predicting water quality status–a study on loa river located in an extremely arid environment: atacama desert. Water 15(16), 2868 (2023)

    Article  Google Scholar 

  12. Gerevini, L., et al.: An end-to-end real-time pollutants spilling recognition in wastewater based on the iot-ready sensiplus platform. J. King Saud Univ.-Comput. Inf. Sci. 35(1), 499–513 (2023)

    Google Scholar 

  13. Haghiabi, A.H., Nasrolahi, A.H., Parsaie, A.: Water quality prediction using machine learning methods. Water Qual. Res. J. 53(1), 3–13 (2018)

    Article  Google Scholar 

  14. Jaloree, S., Rajput, A., Gour, S.: Decision tree approach to build a model for water quality. Binary J. Data Mining Network. 4(1), 25–28 (2014)

    Google Scholar 

  15. Kang, S.-H., Jeong, I.-S., Lim, H.-S.: A deep learning-based biomonitoring system for detecting water pollution using caenorhabditis elegans swimming behaviors. Eco. Inf. 80, 102482 (2024)

    Article  Google Scholar 

  16. Konde, S., Deosarkar, S.: Iot based water quality monitoring system. In: 2nd International Conference on Communication & Information Processing (ICCIP) (2020)

    Google Scholar 

  17. Mohammadi, M., Al-Fuqaha, A., Sorour, S., Guizani, M.: Deep learning for iot big data and streaming analytics: a survey. IEEE Commun. Surv. Tutor. 20(4), 2923–2960 (2018)

    Article  Google Scholar 

  18. Molinara, M., Ferdinandi, M., Cerro, G., Ferrigno, L., Massera, E.: An end to end indoor air monitoring system based on machine learning and sensiplus platform. IEEE Access 8, 72204–72215 (2020)

    Article  Google Scholar 

  19. Nasir, N., et al.: Water quality classification using machine learning algorithms. J. Water Process Eng. 48, 102920 (2022)

    Article  Google Scholar 

  20. Ria, A., Cicalini, M., Manfredini, G., Catania, A., Piotto, M., Bruschi, P.: The SENSIPLUS: a single-chip fully programmable sensor interface. In: Saponara, S., De Gloria, A. (eds.) ApplePies 2021. LNEE, vol. 866, pp. 256–261. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95498-7_36

    Chapter  Google Scholar 

  21. Roitero, K., et al.: Detection of wastewater pollution through natural language generation with a low-cost sensing platform. IEEE Access 11, 50272–50284 (2023)

    Article  Google Scholar 

  22. Tripathi, M., Singal, S.K.: Use of principal component analysis for parameter selection for development of a novel water quality index: a case study of river ganga india. Ecol. Ind. 96, 430–436 (2019)

    Google Scholar 

  23. Zhu, L., Husny, Z.J.B.M., Samsudin, N.A., Xu, H., Han, C.: Deep learning method for minimizing water pollution and air pollution in urban environment. Urban Clim. 49, 101486 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza Mustafa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mustafa, H., Molinara, M., Ferrigno, L., Vitelli, M. (2025). A Deep Learning System for Water Pollutant Detection Based on the SENSIPLUS Microsensor. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15323. Springer, Cham. https://doi.org/10.1007/978-3-031-78347-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78347-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78346-3

  • Online ISBN: 978-3-031-78347-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics