Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

ACRA: A Cutting-Edge Analytics Platform for Advanced Real-Time Corruption Risk Assessment and Investigation Prioritization

  • Conference paper
  • First Online:
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS 2024)

Abstract

In the realm of anti-corruption initiatives, critical challenges need to be addressed for reinforcing the global fight against corruption. FALCON, a Horizon Europe research program, employs a multi-actor, evidence-based approach to develop actionable indicators and data-driven tools aiming to offer comprehensive corruption intelligence. In this context, the proposed prototype tool, ACRA (Advanced Corruption Risk Assessment), addresses FALCON’s objectives. Designed for Law Enforcement Agencies and Anti-corruption Authorities, ACRA enables real-time analysis for identifying high risks related to corruption cases. The platform allows for anomaly detection in ownership structures, generating corruption probability scores based on diverse risk indicators, providing an overall risk assessment report based on likelihood and impact, integrating inputs from various sources, and tracing cross-border links. ACRA stands as a customizable, real-time analytical platform prototype, facilitating the identification and prioritization of investigations. The current study contributes to the scope of the SAMOSXXIV conference by presenting the capabilities of the ACRA tool and the challenges addressed by it, focusing on transparency and on the sharing of insights that may benefit the broader research community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). https://doi.org/10.1109/ICEngTechnol.2017.8308186

  2. Atlam, H.F., Walters, R.J., Wills, G.B., Daniel, J.: Fuzzy logic with expert judgment to implement an adaptive risk-based access control model for IoT. Mob. Networks Appl. 1–13 (2019). https://doi.org/10.1007/s11036-019-01214-w

  3. Aznar-Siguan, G., Bresch, D.N.: CLIMADA v1: a global weather and climate risk assessment platform. Geoscientific Model Dev. 12(7), 3085–3097 (2019). https://doi.org/10.5194/gmd-12-3085-2019

    Article  MATH  Google Scholar 

  4. Benítez-Martínez, F.L., Romero-Frías, E., Hurtado-Torres, M.V.: Neural blockchain technology for a new anticorruption token: towards a novel governance model. J. Inf. Technol. Politics 20(1), 1–18 (2023). https://doi.org/10.1080/19331681.2022.2027317

    Article  Google Scholar 

  5. Buscema, M.: Back propagation neural networks. Subst. Use Misuse 33(2), 233–270 (1998). https://doi.org/10.3109/10826089809115863

    Article  MATH  Google Scholar 

  6. Caruso, S., Bruccoleri, M., Pietrosi, A., Scaccianoce, A.: Artificial intelligence to counteract KPI overload in business process monitoring: the case of anti-corruption in public organizations. Bus. Process Manage. J. 29 (2023). https://doi.org/10.1108/BPMJ-11-2022-0578

  7. Donohoe, H., Stellefson, M., Tennant, B.: Advantages and limitations of the e-Delphi technique. Am. J. Health Educ. 43(1), 38–46 (2012). https://doi.org/10.1080/19325037.2012.10599216

    Article  MATH  Google Scholar 

  8. Dote, Y.: Introduction to fuzzy logic. In: Proceedings of IECON 1995 - 21st Annual Conference on IEEE Industrial Electronics, vol. 1, pp. 50–56 (1995). https://doi.org/10.1109/IECON.1995.483332

  9. FALCON: FALCON research project. https://www.falcon-horizon.eu

    Google Scholar 

  10. Gallab, M., Bouloiz, H., Alaoui, Y.L., Tkiouat, M.: Risk assessment of maintenance activities using fuzzy logic. Procedia Comput. Sci. 148, 226–235 (2019). https://doi.org/10.1016/j.procs.2019.01.065

    Article  Google Scholar 

  11. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004). https://doi.org/10.2307/25148625

    Article  MATH  Google Scholar 

  12. Kandasamy, K., Srinivas, S., Achuthan, K., Rangan, V.P.: IoT cyber risk: a holistic analysis of cyber risk assessment frameworks, risk vectors, and risk ranking process. EURASIP J. Inf. Secur. 2020(1), 1–18 (2020). https://doi.org/10.1186/s13635-020-00111-0

    Article  MATH  Google Scholar 

  13. Kaya Uyanık, G., Güler, N.: A study on multiple linear regression analysis. Procedia. Soc. Behav. Sci. 106, 234–240 (2013). https://doi.org/10.1016/j.sbspro.2013.12.027

    Article  MATH  Google Scholar 

  14. Kõlvart, M., Poola, M., Rull, A.: Smart contracts. In: Kerikmäe, T., Rull, A. (eds.) The Future of Law and eTechnologies, pp. 133–147. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26896-5_7

  15. Kose, U.: Fundamentals of fuzzy logic with an easy-to-use, interactive fuzzy control application. Int. J. Mod. Eng. Res. 2(3), 1198–1203 (2012)

    MATH  Google Scholar 

  16. McDevitt, A.: Corruption Risk Assessment Topic Guide. Tech. rep, Transparency International (2011)

    Google Scholar 

  17. Noerlina et al.: Development of a web based corruption case mapping using machine learning with artificial neural network. In: 2018 International Conference on Information Management and Technology (ICIMTech), pp. 400–405 (2018). https://doi.org/10.1109/ICIMTech.2018.8528150

  18. Pallets Projects: Flask. https://flask.palletsprojects.com/en/3.0.x/

  19. Paltrinieri, N., Comfort, L., Reniers, G.: Learning about risk: machine learning for risk assessment. Saf. Sci. 118, 475–486 (2019). https://doi.org/10.1016/j.ssci.2019.06.001

    Article  MATH  Google Scholar 

  20. Pozsgai-Alvarez, J.: The abuse of entrusted power for private gain: meaning, nature and theoretical evolution. Crime Law Soc. Chang. 74(4), 433–455 (2020). https://doi.org/10.1007/s10611-020-09903-4

    Article  MATH  Google Scholar 

  21. Sperduti, A., Starita, A.: Supervised neural networks for the classification of structures. IEEE Trans. Neural Networks 8(3), 714–735 (1997). https://doi.org/10.1109/72.572108

    Article  MATH  Google Scholar 

  22. Swan, M.: Blockchain: Blueprint for a New Economy. O’Reilly Media (2015)

    Google Scholar 

  23. Taleb, N.: The Black Swan. Random House, A Random House International Edition (2009)

    Google Scholar 

  24. Transparency International: What is corruption? https://www.transparency.org/en/what-is-corruption

  25. Wacker, J., Ferreira, R.P., Ladeira, M.: Detecting fake suppliers using deep image features. In: 2018 7th Brazilian Conference on Intelligent Systems (BRACIS), pp. 224–229 (2018). https://doi.org/10.1109/BRACIS.2018.00046

  26. Weingärtner, T., Batista, D., Köchli, S., Voutat, G.: Prototyping a smart contract based public procurement to fight corruption. Computers 10(7) (2021). https://doi.org/10.3390/computers10070085

  27. Yi, H., Shiyu, S., Xiusheng, D., Zhigang, C.: A study on deep neural networks framework. In: 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), pp. 1519–1522 (2016). https://doi.org/10.1109/IMCEC.2016.7867471

Download references

Acknowledgments

Co-funded by the European Union within the Horizon Europe programme, under FALCON project - grant agreement No. 101121281. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Executive Agency. Neither the European Union nor the the granting authority can be held responsible for them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanouil Daskalakis .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peppes, N., Daskalakis, E., Alexakis, T., Adamopoulou, E. (2025). ACRA: A Cutting-Edge Analytics Platform for Advanced Real-Time Corruption Risk Assessment and Investigation Prioritization. In: Carro, L., Regazzoni, F., Pilato, C. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2024. Lecture Notes in Computer Science, vol 15227. Springer, Cham. https://doi.org/10.1007/978-3-031-78380-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78380-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78379-1

  • Online ISBN: 978-3-031-78380-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics