Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

GSTran: Joint Geometric and Semantic Coherence for Point Cloud Segmentation

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15318))

Included in the following conference series:

  • 121 Accesses

Abstract

Learning meaningful local and global information remains a challenge in point cloud segmentation tasks. When utilizing local information, prior studies indiscriminately aggregates neighbor information from different classes to update query points, potentially compromising the distinctive feature of query points. In parallel, inaccurate modeling of long-distance contextual dependencies when utilizing global information can also impact model performance. To address these issues, we propose GSTran, a novel transformer network tailored for the segmentation task. The proposed network mainly consists of two principal components: a local geometric transformer and a global semantic transformer. In the local geometric transformer module, we explicitly calculate the geometric disparity within the local region. This enables amplifying the affinity with geometrically similar neighbor points while suppressing the association with other neighbors. In the global semantic transformer module, we design a multi-head voting strategy. This strategy evaluates semantic similarity across the entire spatial range, facilitating the precise capture of contextual dependencies. Experiments on ShapeNetPart and S3DIS benchmarks demonstrate the effectiveness of the proposed method, showing its superiority over other algorithms. The code is available at https://github.com/LAB123-tech/GSTran.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bazazian, D., Casas, J.R., Ruiz-Hidalgo, J.: Fast and robust edge extraction in unorganized point clouds. In: 2015 International Conference on Digital Image Computing: Techniques and applications, pp. 1–8. IEEE (2015)

    Google Scholar 

  2. Chen, J., Kakillioglu, B., Velipasalar, S.: Background-aware 3-D point cloud segmentation with dynamic point feature aggregation. IEEE Trans. Geosci. Remote Sens. 60, 1–12 (2022)

    Google Scholar 

  3. Du, Z., Ye, H., Cao, F.: A novel local-global graph convolutional method for point cloud semantic segmentation. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  4. Fan, S., Dong, Q., Zhu, F., Lv, Y., Ye, P., Wang, F.Y.: SCF-net: learning spatial contextual features for large-scale point cloud segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14504–14513 (2021)

    Google Scholar 

  5. Feng, M., Zhang, L., Lin, X., Gilani, S.Z., Mian, A.: Point attention network for semantic segmentation of 3D point clouds. Pattern Recogn. 107, 107446 (2020)

    Article  Google Scholar 

  6. Guo, B., Deng, L., Wang, R., Guo, W., Ng, A.H.M., Bai, W.: MCTNet: multiscale cross-attention based transformer network for semantic segmentation of large-scale point cloud. IEEE Trans. Geosci. Remote Sens. (2023)

    Google Scholar 

  7. Guo, M.-H., Cai, J.-X., Liu, Z.-N., Mu, T.-J., Martin, R.R., Hu, S.-M.: PCT: point cloud transformer. Comput. Vis. Media 7(2), 187–199 (2021). https://doi.org/10.1007/s41095-021-0229-5

    Article  Google Scholar 

  8. Li, Y., Duan, Y.: Multi-scale network with attentional multi-resolution fusion for point cloud semantic segmentation. In: 2022 26th International Conference on Pattern Recognition, pp. 3980–3986. IEEE (2022)

    Google Scholar 

  9. Li, Z., et al.: Geodesic self-attention for 3d point clouds. Adv. Neural. Inf. Process. Syst. 35, 6190–6203 (2022)

    Google Scholar 

  10. Liu, M., et al.: PartSLIP: low-shot part segmentation for 3d point clouds via pretrained image-language models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21736–21746 (2023)

    Google Scholar 

  11. Lu, D., Xie, Q., Gao, K., Xu, L., Li, J.: 3DCTN: 3D convolution-transformer network for point cloud classification. IEEE Trans. Intell. Transp. Syst. 23(12), 24854–24865 (2022)

    Article  Google Scholar 

  12. Ma, X., Qin, C., You, H., Ran, H., Fu, Y.: Rethinking network design and local geometry in point cloud: a simple residual MLP framework. In: International Conference on Learning Representations (2021)

    Google Scholar 

  13. Mei, G., Riz, L., Wang, Y., Poiesi, F.: Geometrically-driven aggregation for zero-shot 3D point cloud understanding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2024)

    Google Scholar 

  14. Mei, G., et al.: Unsupervised point cloud representation learning by clustering and neural rendering. Int. J. Comput. Vision 1–19 (2024)

    Google Scholar 

  15. Park, J., Lee, S., Kim, S., Xiong, Y., Kim, H.J.: Self-positioning point-based transformer for point cloud understanding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21814–21823 (2023)

    Google Scholar 

  16. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  17. Qiu, S., Anwar, S., Barnes, N.: Geometric back-projection network for point cloud classification. IEEE Trans. Multimedia 24, 1943–1955 (2021)

    Article  Google Scholar 

  18. Qiu, S., Anwar, S., Barnes, N.: Semantic segmentation for real point cloud scenes via bilateral augmentation and adaptive fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1757–1767 (2021)

    Google Scholar 

  19. Ran, H., Liu, J., Wang, C.: Surface representation for point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18942–18952 (2022)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Song, H., Feng, H.Y.: A progressive point cloud simplification algorithm with preserved sharp edge data. Int. J. Adv. Manuf. Technol. 45, 583–592 (2009)

    Article  Google Scholar 

  22. Srivastava, S., Sharma, G.: Exploiting local geometry for feature and graph construction for better 3d point cloud processing with graph neural networks. In: 2021 IEEE INternational Conference on robotics and Automation, pp. 12903–12909. IEEE (2021)

    Google Scholar 

  23. Tang, L., Zhan, Y., Chen, Z., Yu, B., Tao, D.: Contrastive boundary learning for point cloud segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8489–8499 (2022)

    Google Scholar 

  24. Wang, C., Ning, X., Sun, L., Zhang, L., Li, W., Bai, X.: Learning discriminative features by covering local geometric space for point cloud analysis. IEEE Trans. Geosci. Remote Sens. 60, 1–15 (2022)

    Google Scholar 

  25. Wu, C., Zheng, J., Pfrommer, J., Beyerer, J.: Attention-based point cloud edge sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5333–5343 (2023)

    Google Scholar 

  26. Yan, X., Zheng, C., Li, Z., Wang, S., Cui, S.: PointASNL: Robust point clouds processing using nonlocal neural networks with adaptive sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5589–5598 (2020)

    Google Scholar 

  27. Yu, X., Rao, Y., Wang, Z., Liu, Z., Lu, J., Zhou, J.: PoinTr: diverse point cloud completion with geometry-aware transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12498–12507 (2021)

    Google Scholar 

  28. Zhang, H., Wang, C., Yu, L., Tian, S., Ning, X., Rodrigues, J.: PointGT: a method for point-cloud classification and segmentation based on local geometric transformation. IEEE Trans. Multimed. (2024)

    Google Scholar 

  29. Zhao, H., Jiang, L., Fu, C.W., Jia, J.: PointWeb: enhancing local neighborhood features for point cloud processing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5565–5573 (2019)

    Google Scholar 

  30. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16259–16268 (2021)

    Google Scholar 

  31. Zhou, W., et al.: GTNet: graph transformer network for 3D point cloud classification and semantic segmentation. arXiv preprint arXiv:2305.15213 (2023)

  32. Zhu, H., Yang, H., Wu, X., Huang, D., Zhang, S., et.al.: PonderV2: pave the way for 3D foundataion model with a universal pre-training paradigm. arXiv preprint arXiv:2310.08586 (2023)

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 62132006, 62441203, 62311530101 and 62271237, Natural Science Foundation of Jiangxi Province of China under Grants 20223AEI91002, the PNRR project FAIR- Future AI Research (PE00000013), under the NRRP MUR program funded by the NextGenerationEU and Postgraduate Innovation Special Fund of Jiangxi Province under Grant YC2023-B184.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuming Fang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3322 KB)

A Appendix

A Appendix

Experiments on robustness, outdoor point cloud scenarios, and others are included in the supplementary material. For more details, please refer to the links below. Either of the following two links can be chosen.

Link 1: Google Drive.

https://drive.google.com/file/d/1rS36mBizZS4yHw4tcuOc5JAYDYLr1SUk/view?usp=sharing

Link 2: Baidu Drive. Password: 1234

https://pan.baidu.com/s/1T3hOOrgMKvwmQOvGTzaeVQ

Password: 1234

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, A., Lv, C., Mei, G., Zuo, Y., Zhang, J., Fang, Y. (2025). GSTran: Joint Geometric and Semantic Coherence for Point Cloud Segmentation. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15318. Springer, Cham. https://doi.org/10.1007/978-3-031-78456-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78456-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78455-2

  • Online ISBN: 978-3-031-78456-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics