Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Online Social Community Neighborhood Formation

  • Conference paper
  • First Online:
Social Networks Analysis and Mining (ASONAM 2024)

Abstract

Online social networks (OSNs) provide community platforms that engage users. The public page is a popular example. These pages are connected through “like” relationships, creating online community networks and neighborhoods. We investigated the pivotal features influencing link formation and neighborhood structuring within the page graph by exploring a series of potential features, both graph-based and content-based. Our methodology combines node similarity and Graph Neural Networks to perform link prediction. We identified the page state label as the single most accurate predictor in link prediction tasks, which also is the most efficient feature with the smallest number of classes. Moreover, we observe that augmenting the page state label feature with the page node degree and page city population features further enhances link prediction accuracy. Page location label shows a strong effect on pages connecting with their neighbors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the facebook social graph, arXiv preprint arXiv:1111.4503 (2011)

  2. Wikipedia contributors, List of social platforms with at least 100 million active users — Wikipedia, the free encyclopedia (2023) (Accessed 30-May-2023)

    Google Scholar 

  3. Barnett, G.A., Benefield, G.A.: Predicting international Facebook ties through cultural homophily and other factors. New Media Soc. 19(2), 217–239 (2017)

    Article  MATH  Google Scholar 

  4. Daud, N.N., Ab Hamid, S.H., Saadoon, M., Sahran, F., Anuar, N.B.: Applications of link prediction in social networks: a review. J. Netw. Comput. Appli. 166, 102716 (2020), https://www.sciencedirect.com/science/article/pii/S1084804520301909

  5. Hong, Y., Lin, Y.-C., Lai, C.-M., Felix Wu, S., Barnett, G.A.: Profiling facebook public page graph. In: 2018 International Conference on Computing, Networking and Communications (ICNC), pp. 161–165 (2018)

    Google Scholar 

  6. Wang, J., Wang, X., Lai, C.-M., Felix Wu, S.: Online social community sub-location classification. In Proceedings of the 2023 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2023). Association for Computing Machinery, New York, pp. 276–280 (2024). https://doi.org/10.1145/3625007.3627504

  7. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009)

    Article  MATH  Google Scholar 

  8. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. In: Proceedings of International Conference on Learning Representations, pp. 1-14 (2014)

    Google Scholar 

  9. Yan, M., et al.: Characterizing and understanding GCNs on GPU. IEEE Comput. Archit. Lett. 19(1), 22–25 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna, V.: Graphsaint: Graph sampling based inductive learning method, arXiv preprint arXiv:1907.04931 (2019)

  11. Lee, S.H., Kim, P.-J., Jeong, H.: Statistical properties of sampled networks. Phys. Rev. E 73, 016102 (2006)

    Google Scholar 

  12. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inform. Sci. Technol. 58(7), 1019–1031 (2007). https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.20591

  13. Yang, Z., Ding, M., Zhou, C., Yang, H., Zhou, J., Tang, J.: Understanding negative sampling in graph representation learning. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2020. Association for Computing Machinery, New York (2020), pp. 1666–1676. https://doi.org/10.1145/3394486.3403218

  14. Yilmaz, E.A., Balcisoy, S., Bozkaya, B.: A link prediction-based recommendation system using transactional data. Sci. Rep. 13(1), 6905 (2023)

    Article  MATH  Google Scholar 

  15. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Annual Rev. Sociol. 27, 415–444 (2001). http://www.jstor.org/stable/2678628

  16. Leskovec, J., Horvitz, E.: Planetary-scale views on an instant-messaging network (2008)

    Google Scholar 

  17. Potdar, K., Pardawala, T.S., Pai, C.D.: A comparative study of categorical variable encoding techniques for neural network classifiers. Inter. J. Comput. Appli. 175(4), 7–9 (2017)

    MATH  Google Scholar 

  18. Morris, C., et al.: Weisfeiler and leman go neural: Higher-order graph neural networks (2021)

    Google Scholar 

  19. Fey, M., Lenssen, J.E.: Fast graph representation learning with pytorch geometri, arXiv preprint arXiv:1903.02428 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiarui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Barnett, G., Matloff, N., Wu, S.F. (2025). Online Social Community Neighborhood Formation. In: Aiello, L.M., Chakraborty, T., Gaito, S. (eds) Social Networks Analysis and Mining. ASONAM 2024. Lecture Notes in Computer Science, vol 15211. Springer, Cham. https://doi.org/10.1007/978-3-031-78541-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78541-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78540-5

  • Online ISBN: 978-3-031-78541-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics