Abstract
Mastering complexity is one of the greatest challenges for future dependable information processing systems. Traditional fault tolerance techniques relying on explicit fault models seem to be not sufficient to meet this challenge. During their evolution living organisms have, however, developed very effective and efficient mechanisms like the autonomic nervous system or the immune system to make them adaptive and self-organising. Thus, they are able to cope with anomalies, faults or new unforeseen situations in a safe way. Inspired by these organic principles the control architecture ORCA (Organic Robot Control Architecture) was developed. Its aim is to transfer self-x properties from organic to robotic systems. It is described in this article with a specific focus on the way ORCA deals with dynamically changing uncertainties and anomalies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albiez, J., Luksch, T., Berns, K., Dillmann, R.: An activation-based behavior control architecture for walking machines. Int. J. Robot. Res. 22(3–4), 203–211 (2003)
Brockmann, W., Buschermöhle, A., Hülsmann, J.: A generic concept to increase the robustness of embedded systems by trust management. In: Proc. IEEE Conf. Systems, Man, and Cybernetics, SMC, pp. 2037–2044 (2010)
Brockmann, W., Rosemann, N.: Instantaneous anomaly detection in online learning fuzzy systems. In: Hoffmann, F., Cordón, O., Angelov, P., Klawonn, F. (eds.) 3rd Int. Workshop on Genetic and Evolving Fuzzy Systems, pp. 23–28. IEEE Press, Piscataway (2008)
Brockmann, W., Rosemann, N., Lintze, C.: Dynamic rate adaptation in self-adapting real-time control systems. In: Lohweg, V., Niggemann, O. (eds.) Proc. Workshop Machine Learning in Real-Time Applications. Lemgo Series on Industrial Information Technology, vol. 3 (2009)
Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986)
Gat, E.: On Three-Layer Architectures. In: Kortenkamp, D., Bonasso, R.P., Murphy, R. (eds.) Artificial Intelligence and Mobile Robots, pp. 195–210. MIT Press, Cambridge (1998)
Großpietsch, K.-E., Silayeva, T.A.: Organic computing—a new paradigm for achieving self-organized dependable behaviour of complex IT-systems. In: Hoyer, C., Chroust, G. (eds.) Proc. IDIMT 2006 Conf., pp. 127–138. Trauner, Linz (2006)
Großpietsch, K.-E., Silayeva, T.A.: Fault monitoring for hybrid systems by means of adaptive filters. In: Doucek, P., Chroust, G., Oskrdal, V. (eds.) Proc. IDIMT 2010 Conf., pp. 177–185. Trauner, Linz (2010)
Jakimovski, B., Maehle, E.: Artificial immune system based robot anomaly detection engine for fault tolerant robots. In: Proc. Int. Conf. Autonomic and Trusted Computing, ATC, pp. 177–190. Springer, Berlin (2008)
Jakimovski, B., Meyer, B., Maehle, E.: Swarm intelligence for self-reconfiguring walking robot. In: Swarm Intelligence Symposium, SIS. IEEE Press, St. Louis (2008)
Jakimovski, B., Meyer, B., Maehle, E.: Self-reconfiguring hexapod robot oscar using organically inspired approaches and innovative robot leg amputation mechanism. In: Int. Conf. Automation, Robotics and Control Systems, ARCS (2009)
Kleinlützum, K., Brockmann, W., Rosemann, N.: Modellierung von Anomalien in einer modularen Roboter-Steuerung. In: Berns, K., Luksch, T. (eds.) Autonome Mobile Systeme 2007, pp. 89–95. Springer, Berlin (2007)
Klement, E.P., Mesiar, R., Pap, E.: A universal integral as common frame for choquet and sugeno integral. IEEE Trans. Fuzzy Syst. 18(1), 178–187 (2010)
Larionova, S., Jakimovski, B., El Sayed Auf, A., Litza, M., Mösch, F., Maehle, E., Brockmann, W.: Toward a fault tolerant mobile robot: mutual information for monitoring of the robot health status. In: Int. Workshop on Technical Challenges for Dependable Robots in Human Environments, IARP, EURON. IEEE/RAS (2007)
Mladenov, M., Mock, M., Großpietsch, K.-E.: Fault monitoring and correction in a walking robot using lms filters. In: Kucera, M., Roth, R., Conti, M. (eds.) Proc. Workshop Int. Solutions in Embedded Systems, pp. 95–104 (2008)
Mösch, F., Litza, M., Auf, E.S., Jakimovski, B., Maehle, E., Brockmann, W.: Organic fault-tolerant controller for the walking robot OSCAR. In: Proc. Work. Dependability and Fault Tolerance, ARCS. VDE Verlag GmbH (2007)
Müller-Schloer, C., von der Malsburg, C., Würtz, R.P.: Organic computing. Inform.-Spektrum 27(4), 332–336 (2004)
Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a generic observer/controller architecture for Organic Computing. In: Hochberger, C., Liskowsky, R. (eds.) INFORMATIK 2006—Informatik für Menschen!, pp. 112–119. Köllen, Bonn (2006)
Scholl, K.-U., Kepplin, V., Albiez, J., Dillmann, R.: Developing robot prototypes with an expandable modular controller architecture. In: Proc. Int. Conf. Intelligent Autonomous Systems, pp. 67–74 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer Basel AG
About this chapter
Cite this chapter
Brockmann, W., Maehle, E., Grosspietsch, KE., Rosemann, N., Jakimovski, B. (2011). ORCA: An Organic Robot Control Architecture. In: Müller-Schloer, C., Schmeck, H., Ungerer, T. (eds) Organic Computing — A Paradigm Shift for Complex Systems. Autonomic Systems, vol 1. Springer, Basel. https://doi.org/10.1007/978-3-0348-0130-0_25
Download citation
DOI: https://doi.org/10.1007/978-3-0348-0130-0_25
Publisher Name: Springer, Basel
Print ISBN: 978-3-0348-0129-4
Online ISBN: 978-3-0348-0130-0
eBook Packages: Computer ScienceComputer Science (R0)