Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Autonomic Systems ((ASYS,volume 1))

  • 1732 Accesses

Abstract

Mastering complexity is one of the greatest challenges for future dependable information processing systems. Traditional fault tolerance techniques relying on explicit fault models seem to be not sufficient to meet this challenge. During their evolution living organisms have, however, developed very effective and efficient mechanisms like the autonomic nervous system or the immune system to make them adaptive and self-organising. Thus, they are able to cope with anomalies, faults or new unforeseen situations in a safe way. Inspired by these organic principles the control architecture ORCA (Organic Robot Control Architecture) was developed. Its aim is to transfer self-x properties from organic to robotic systems. It is described in this article with a specific focus on the way ORCA deals with dynamically changing uncertainties and anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albiez, J., Luksch, T., Berns, K., Dillmann, R.: An activation-based behavior control architecture for walking machines. Int. J. Robot. Res. 22(3–4), 203–211 (2003)

    Article  Google Scholar 

  2. Brockmann, W., Buschermöhle, A., Hülsmann, J.: A generic concept to increase the robustness of embedded systems by trust management. In: Proc. IEEE Conf. Systems, Man, and Cybernetics, SMC, pp. 2037–2044 (2010)

    Google Scholar 

  3. Brockmann, W., Rosemann, N.: Instantaneous anomaly detection in online learning fuzzy systems. In: Hoffmann, F., Cordón, O., Angelov, P., Klawonn, F. (eds.) 3rd Int. Workshop on Genetic and Evolving Fuzzy Systems, pp. 23–28. IEEE Press, Piscataway (2008)

    Chapter  Google Scholar 

  4. Brockmann, W., Rosemann, N., Lintze, C.: Dynamic rate adaptation in self-adapting real-time control systems. In: Lohweg, V., Niggemann, O. (eds.) Proc. Workshop Machine Learning in Real-Time Applications. Lemgo Series on Industrial Information Technology, vol. 3 (2009)

    Google Scholar 

  5. Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986)

    Article  Google Scholar 

  6. Gat, E.: On Three-Layer Architectures. In: Kortenkamp, D., Bonasso, R.P., Murphy, R. (eds.) Artificial Intelligence and Mobile Robots, pp. 195–210. MIT Press, Cambridge (1998)

    Google Scholar 

  7. Großpietsch, K.-E., Silayeva, T.A.: Organic computing—a new paradigm for achieving self-organized dependable behaviour of complex IT-systems. In: Hoyer, C., Chroust, G. (eds.) Proc. IDIMT 2006 Conf., pp. 127–138. Trauner, Linz (2006)

    Google Scholar 

  8. Großpietsch, K.-E., Silayeva, T.A.: Fault monitoring for hybrid systems by means of adaptive filters. In: Doucek, P., Chroust, G., Oskrdal, V. (eds.) Proc. IDIMT 2010 Conf., pp. 177–185. Trauner, Linz (2010)

    Google Scholar 

  9. Jakimovski, B., Maehle, E.: Artificial immune system based robot anomaly detection engine for fault tolerant robots. In: Proc. Int. Conf. Autonomic and Trusted Computing, ATC, pp. 177–190. Springer, Berlin (2008)

    Chapter  Google Scholar 

  10. Jakimovski, B., Meyer, B., Maehle, E.: Swarm intelligence for self-reconfiguring walking robot. In: Swarm Intelligence Symposium, SIS. IEEE Press, St. Louis (2008)

    Google Scholar 

  11. Jakimovski, B., Meyer, B., Maehle, E.: Self-reconfiguring hexapod robot oscar using organically inspired approaches and innovative robot leg amputation mechanism. In: Int. Conf. Automation, Robotics and Control Systems, ARCS (2009)

    Google Scholar 

  12. Kleinlützum, K., Brockmann, W., Rosemann, N.: Modellierung von Anomalien in einer modularen Roboter-Steuerung. In: Berns, K., Luksch, T. (eds.) Autonome Mobile Systeme 2007, pp. 89–95. Springer, Berlin (2007)

    Chapter  Google Scholar 

  13. Klement, E.P., Mesiar, R., Pap, E.: A universal integral as common frame for choquet and sugeno integral. IEEE Trans. Fuzzy Syst. 18(1), 178–187 (2010)

    Article  Google Scholar 

  14. Larionova, S., Jakimovski, B., El Sayed Auf, A., Litza, M., Mösch, F., Maehle, E., Brockmann, W.: Toward a fault tolerant mobile robot: mutual information for monitoring of the robot health status. In: Int. Workshop on Technical Challenges for Dependable Robots in Human Environments, IARP, EURON. IEEE/RAS (2007)

    Google Scholar 

  15. Mladenov, M., Mock, M., Großpietsch, K.-E.: Fault monitoring and correction in a walking robot using lms filters. In: Kucera, M., Roth, R., Conti, M. (eds.) Proc. Workshop Int. Solutions in Embedded Systems, pp. 95–104 (2008)

    Google Scholar 

  16. Mösch, F., Litza, M., Auf, E.S., Jakimovski, B., Maehle, E., Brockmann, W.: Organic fault-tolerant controller for the walking robot OSCAR. In: Proc. Work. Dependability and Fault Tolerance, ARCS. VDE Verlag GmbH (2007)

    Google Scholar 

  17. Müller-Schloer, C., von der Malsburg, C., Würtz, R.P.: Organic computing. Inform.-Spektrum 27(4), 332–336 (2004)

    Google Scholar 

  18. Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a generic observer/controller architecture for Organic Computing. In: Hochberger, C., Liskowsky, R. (eds.) INFORMATIK 2006—Informatik für Menschen!, pp. 112–119. Köllen, Bonn (2006)

    Google Scholar 

  19. Scholl, K.-U., Kepplin, V., Albiez, J., Dillmann, R.: Developing robot prototypes with an expandable modular controller architecture. In: Proc. Int. Conf. Intelligent Autonomous Systems, pp. 67–74 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Rosemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Brockmann, W., Maehle, E., Grosspietsch, KE., Rosemann, N., Jakimovski, B. (2011). ORCA: An Organic Robot Control Architecture. In: Müller-Schloer, C., Schmeck, H., Ungerer, T. (eds) Organic Computing — A Paradigm Shift for Complex Systems. Autonomic Systems, vol 1. Springer, Basel. https://doi.org/10.1007/978-3-0348-0130-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0130-0_25

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0129-4

  • Online ISBN: 978-3-0348-0130-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics