Abstract
Numerical methods for incompressible fluid dynamics have recently received a strong impulse from the applications to the cardiovascular system. In particular, fluid–structure interaction methods have been extensively investigated in view of an accurate and possibly fast simulation of blood flow in arteries and veins. This has been strongly motivated by the progressive interest in using numerical tools not only for understanding the general physiology and pathology of the vascular system. The opportunity offered by medical images properly preprocessed and elaborated to simulate blood flow in real patients highlighted the potential impact of scientific computing on the clinical practice. Therefore, in silico experiments are currently extensively used in bioengineering for completing (and sometimes driving) more traditional in vivo and in vitro investigations. Parallel to the development of numerical models, the need for quantitative analysis for diagnostic purposes has strongly stimulated the design of new methods and instruments for measurements and imaging. Thanks to these developments, a huge amount of data is nowadays available. Data Assimilation is the accurate merging of measures (including images) and numerical simulations for a mathematically sound integration of different sources of information. The outcome of this process includes both the patient-specific measures and the general principles underlying the development of mathematical models. In this way, simulations are adapted to the availability of individual data and are therefore supposed to be more reliable; measures are correspondingly filtered by the mathematical models assumed to describe the underlying phenomena, resulting in a (hopefully) significant reduction of the noise.
This chapter provides an introduction to methods for data assimilation, mostly developed in fields like meteorology, applied to computational hemodynamics. We focus mainly on two of them: methods based on stochastic arguments (Kalman filtering) and variational methods. We also address some examples that have been approached with different techniques, in particular the estimation of vascular compliance from displacement measures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We remind that the wall shear stress (WSS) is a quantity of great relevance in biomedical applications for its correlation with pathologies such as atherosclerosis—see, e.g., [14].
- 2.
Precise definitions of average and variance of a Gaussian variable will be given later on.
- 3.
The choice of Gaussian distribution for white noise is reasonable, but arbitrary. We could have considered other distributions for zero-mean, uncorrelated components.
- 4.
The third problem addressed in the Introduction, the identification of the system will be considered later on.
- 5.
A similar problem has been investigated as a simplified model of superconductivity in [69].
- 6.
This could be done also with unilateral constraints \(\|\boldsymbol{\alpha }\|\leq \) max-cost-allowed.
- 7.
We remind that we assumed b to be divergence free.
- 8.
Here we used the Lagrange multiplier χ 2 to prescribe the Dirichlet homogeneous boundary condition. Often, such condition is prescribed without using Lagrange multipliers but requiring directly that u and χ 1 vanish on the boundary.
- 9.
This can be problematic in a clinical context, where patient-specific geometries differ one from the other and the snapshot computation is not trivially recycled. Anatomical atlas mapping ideal to real geometries are required.
- 10.
Notice that we use the word “sites” for the location of measurements, as opposed to the word “nodes” for points where velocities are computed. In general sites and nodes are different, but we do not exclude that the intersection of sites set and nodes set in non-empty.
- 11.
We define the signal to noise ratio as the ratio between the maximum of the absolute value of the signal and the standard deviation of the noise
- 12.
This assumption may be questionable for arteries close to the heart (like the aortic arch), however it is in general quite acceptable.
- 13.
See (6.37), and note that here the adjoint variable is denoted with \(\boldsymbol{\chi }\) as in this context ρ is used for the density.
References
H. Abou-Kandil, G. Freiling, V. Ionescu, G. Jank, Matrix Riccati Equations: In Control and Systems Theory (Springer, Berlin, 2003)
H.T. Banks, A Functional Analysis Framework for Modeling, Estimation and Control in Science and Engineering (Taylor & Francis, London, 2012)
H.T. Banks, K. Kunisch, Estimation Techniques for Distributed Parameter Systems. (Birkhauser, Boston, 1989)
P.E. Barbone, A.A. Oberai, Elastic modulus imaging: some exact solutions of the compressible elastography inverse problem. Phys. Med. Biol. 52, 1577 (2007)
P.E. Barbone, C.E. Rivas, I. Harari, U. Albocher, A.A. Oberai, Y. Zhang, Adjoint-weighted variational formulation for the direct solution of inverse problems of general linear elasticity with full interior data. Int. J. Numer. Methods Eng. 81(13), 1713–1736 (2010)
C. Bertoglio, P. Moireau, J.-F. Gerbeau, Sequential parameter estimation for fluid–structure problems: application to hemodynamics. Int. J. Numer. Methods Biomed. Eng. 28(4), 434–455 (2012)
L. Biegler, G. Biros, O. Ghattas, M. Heinkenschloss, D. Keyes, B. Mallick, L. Tenorio, B. Waanders, K. Willcox, Y. Marzouk, Large-Scale Inverse Problems and Quantification of Uncertainty. Wiley Series in Computational Statistics (Wiley, Chichester, 2011)
J. Blum, F.-X. Le Dimet, I. Michael Navon, Data assimilation for geophysical fluids, in Handbook of Numerical Analysis, vol. 14, ed. by P.G. Ciarlet (Elsevier, Amsterdam, 2009), pp. 385–441
P.B. Bochev, Analysis of least-squares finite element methods for the navier-stokes equations. SIAM J. Numer. Anal. 34, 1817–1844 (1997)
P.B. Bochev, M.D. Gunzburger, Least-Squares Finite Element Methods (Springer, Berlin, 2009)
P.T. Boggs, J.W. Tolle, Sequential quadratic programming. Acta Numer. 4, 1–51 (1995)
D. Calvetti, E. Somersalo, An Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing. Surveys and Tutorials in the Applied Mathematical Sciences (Springer Science+Business Media, New York, 2007)
I. Campbell, W. Robert Taylor, Flow and atherosclerosis, in Hemodynamics and Mechanobiology of Endothelium (World Scientific, Hackensack, 2010)
D. Chapelle, A. Gariah, J. Sainte-Marie, Galerkin approximation with proper orthogonal decomposition: new error estimates and illustrative examples. ESAIM: Math. Model. Numer. Anal. 46, 731–757 (2012)
M. D’Elia, A. Veneziani, Uncertainty quantification for data assimilation in a steady incompressible navier-stokes problem. ESAIM: Math. Model. Numer. Anal. 47, 1037–1057 (2013)
M. D’Elia, L. Mirabella, T. Passerini, M. Perego, M. Piccinelli, C. Vergara, A. Veneziani, Some applications of variational data assimilation in computational hemodynamics, in Modelling of Physiological Flows, ed. by D. Ambrosi, A. Quarteroni, G. Rozza. MS&A Series (Springer, Berlin, 2011), pp. 363–394
M. D’Elia, M. Perego, A. Veneziani, A variational data assimilation procedure for the incompressible navier stokes equations in hemodynamics. J. Sci. Comput. 52(2), 340–359 (2012)
H. Delingette, M. Sermesant, R. Cabrera-Lozoya, C. Tobon-Gomez, P. Moireau, R.M. Figueras i Ventura, K. Lekadir, A. Hernandez, M. Garreau, E. Donal, C. Leclercq, S.G. Duckett, K. Rhode, C.A. Rinaldi, A.F. Frangi, R. Razavi, D. Chapelle, N. Ayache, S. Marchesseau, Personalization of a cardiac electromechanical model using reduced order unscented kalman filtering from regional volumes. Med. Image Anal. 17, 816–829 (2013)
J. Donea, S. Giuliani, J.P. Halleux, An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33(1–3), 689–723 (1982)
R.P. Dwight, Bayesian inference for data assimilation using least-squares finite element methods, in IOP Conference Series: Materials Science and Engineering, vol. 10 (IOP Publishing, Bristol, 2010), p. 012224
B. Einarsson, Accuracy and Reliability in Scientific Computing, vol. 18 (Society for Industrial Mathematics, Philadelphia, 2005)
H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems. Mathematics and its Applications (Springer, Berlin, 1996)
L. Formaggia, A. Veneziani, C. Vergara, A new approach to numerical solution of defective boundary value problems in incompressible fluid dynamics. SIAM J. Numer. Anal. 46(6), 2769–2794 (2008)
L. Formaggia, A. Quarteroni, A. Veneziani, Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, vol. 1 (Springer, Berlin, 2009)
L. Formaggia, A. Veneziani, C. Vergara, Flow rate boundary problems for an incompressible fluid in deformable domains: formulations and solution methods. Comput. Methods Appl. Mech. Eng. 9(12), 677–688 (2010)
P.C. Franzone, L.F. Pavarino, A Parallel Solver for Reaction-Diffusion Systems in Computational Electrocardiology, Math. Model. Methods in Appl. Sci. 14(6), 883–911 (2004) doi:10.1142/s0218202504003489
B. Fristedt, N. Jain, N.V. Krylov, Filtering and Prediction: A Primer, STML vol. 38, AMS, Providence, RI (2007)
K. Funamoto, T. Hayase, Reproduction of pressure field in ultrasonic-measurement-integrated simulation of blood flow. Int. J. Numer. Methods Biomed. Eng. 29(7), 726–740 (2013)
G.P. Galdi, A.M. Robertson, R. Rannacher, S. Turek, Hemodynamical Flows: Modeling, Analysis and Simulation. Oberwolfach Seminar Series, vol. 37, Birkhauser Verlag AG, Basel (2008)
J.F. Gerbeau, D. Lombardi, Reduced-order modeling based on approximated lax pairs. Technical Report RR 8137, INRIA. arXiv:1211.4153v1 (November 2012)
E. Gilboa, P.S. La Rosa, A. Nehorai, Estimating electrical conductivity tensors of biological tissues using microelectrode arrays, in Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE (2012), pp. 1040–1044
R. Glowinski, J.L. Lions, Exact and approximate controllability for distributed parameter systems. Acta Numer. 3, 269–378 (1994)
R. Glowinski, J.L. Lions, Exact and approximate controllability for distributed parameter systems. Acta Numer. 4, 159–328 (1995)
R. Glowinski, J.-L. Lions, J. He, Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach (Encyclopedia of Mathematics and its Applications), 1st edn. (Cambridge University Press, New York, 2008)
G.H. Golub, C.F. Van Loan, Matrix Computations, vol. 3 (Johns Hopkins University Press, Baltimore, 1996)
L.S. Graham, D. Kilpatrick, Estimation of the bidomain conductivity parameters of cardiac tissue from extracellular potential distributions initiated by point stimulation. Ann. Biomed. Eng. 38(12), 3630–3648 (2010)
M.D. Gunzburger, Perspectives in Flow Control and Optimization, vol. 5 (Society for Industrial Mathematics, Philadelphia, 2003)
P.C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems. SIAM Monographs on Mathematical Modeling and Computation (Society for Industrial and Applied Mathematics, Philadelphia, 1998)
J.J. Heys, T.A. Manteuffel, S.F. McCormick, M. Milano, J. Westerdale, M. Belohlavek, Weighted least-squares finite elements based on particle imaging velocimetry data. J. Comput. Phys. 229(1), 107–118 (2010)
K. Hinsch, 3-Dimensional particle velocimetry. Meas. Sci. Technol. 6, 742–753 (1995)
T.J.R. Hughes, W.K. Liu, T.K. Zimmermann, Lagrangian-eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29(3), 329–349 (1981)
J. Humpherys, P. Redd, J. West, A fresh look at the kalman filter. SIAM Rev. 54(4), 801–823 (2012)
S.J. Julier, J.K. Uhlmann, A new extension of the kalman filter to nonlinear systems, in Proceedings of SPIE 3068, Signal Processing, Sensor Fusion, and Target Recognition VI, 182 (1997), pp. 182–193
S.J. Julier, J.K. Uhlmann, Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004)
T. Kailath, Lectures Notes on Wiener and Kalman Filtering (Springer, Berlin, 1981)
J. Kaipio, E. Somersalo, Statistical and Computational Inverse Problems (Applied Mathematical Sciences), vol. 160, 1st edn. (Springer, Berlin, 2004)
R.E. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82, 35–45 (1960)
K. Kunisch, M. Wagner, Optimal control of the bidomain system (iii): existence of minimizers and first-order optimality conditions. ESAIM: Math. Model. Numer. Anal. 47, 1077–1106 (2013)
K. Kunisch, M. Wagner, Optimal control of the bidomain system (ii): uniqueness and regularity theorems for weak solutions. Annali di Matematica Pura ed Applicata 192, 1–36 (2012)
P. Lancaster, L. Rodman, Algebraic Riccati Equations (Oxford Science Publications, New York, 1995)
T. Lassila, A. Manzoni, A. Quarteroni, G. Rozza, A reduced computational and geometrical framework for inverse problems in hemodynamics. Int. J. Numer. Methods Biomed. Eng. 29(7), 741–776 (2013)
J. Modersitzki, FAIR: Flexible Algorithms for Image Registration. Fundamentals of Algorithms (Society for Industrial and Applied Mathematics, Philadelphia, 2009)
P. Moireau, D. Chapelle, Reduced-order unscented kalman filtering with application to parameter identification in large-dimensional systems. ESAIM: Control Optim. Calc. Var. 17(02), 380–405 (2011)
A.M. Mood, F.A. Graybill, D.C. Boes, Introduction to the Theory of Statistics (McGraw-Hill, New York, 1974)
C. Nagaiah, K. Kunisch, G. Plank, Numerical solutions for optimal control of monodomain equations. PAMM 9(1), 609–610 (2009)
F. Nobile, C. Vergara, An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J. Sci. Comput. 30(2), 731–763 (2008)
J. Nocedal, S. Wright, Numerical Optimization (Springer, Berlin, 2000)
M. Perego, A. Veneziani, C. Vergara, A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid-structure interaction problem. SIAM J. Sci. Comput. 33(3), 1181–1211 (2011)
K.B. Petersen, M.S. Pedersen, The matrix cookbook. Technical report, http://matrixcookbook.com (2008)
M. Piccinelli, L. Mirabella, T. Passerini, E. Haber, A. Veneziani, 4d image-based cfd simulation of a compliant blood vessel. Technical report, Technical Report TR-2010-27, Department of Mathematics & CS, Emory University, www.mathcs.emory.edu (2010)
A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics. Texts in Applied Mathematics Series (Springer GmbH, Berlin, 2000)
A. Quarteroni, L. Formaggia, A. Veneziani, Complex Systems in Biomedicine (Springer, Berlin, 2007)
G. Rozza, K. Veroy, On the stability of the reduced basis method for stokes equations in parametrized domains. Comput. Methods Appl. Mech. Eng. 196(7), 1244–1260 (2007)
G. Rozza, D.B.P. Huynh, A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15(3), 229–275 (2008)
S. Salsa, Partial Differential Equations in Action: From Modelling to Theory (Springer, Berlin, 2008)
O. Scherzer, The use of morozov’s discrepancy principle for tikhonov regularization for solving nonlinear ill-posed problems. Computing 51(1), 45–60 (1993)
R. Todling, Estimation theory and foundations of atmospheric data assimilation. DAO Office Note 1:1999 (1999)
F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods, and Applications, vol. 112 (American Mathematical Society, Providence, 2010)
K. Urban, A.T. Patera, A new error bound for reduced basis approximation of parabolic partial differential equations. C. R. Math. 350(3–4), 203–207 (2012)
A. Veneziani, C. Vergara, Inverse problems in cardiovascular mathematics: toward patient-specific data assimilation and optimization. Int. J. Numer. Methods Biomed. Eng. 29(7), 723/725 (2013). Editorial of the special issue “Inverse Problems in Cardiovascular Mathematics”
C.R. Vogel, Computational Methods for Inverse Problems. Frontiers in Applied Mathematics (Society for Industrial and Applied Mathematics, Philadelphia, 2002)
E.A. Wan, R. Van der Merwe, The unscented kalman filter for nonlinear estimation, in Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000. AS-SPCC. The IEEE 2000 (2000), pp 153–158
H. Yang, A. Veneziani, Variational estimation of cardiac conductivities by a data assimilation procedure. Technical Report TR-2013-007, Math&CS, Emory University (July 2013)
Acknowledgements
The authors wish to thank Tiziano Passerini (Siemens, Princeton, NJ, USA) and Marina Piccinelli (Emory University, Department of Radiology) for several contributions in the development of methods and codes used for the topics considered in the chapter.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Basel
About this chapter
Cite this chapter
Bertagna, L., D’Elia, M., Perego, M., Veneziani, A. (2014). Data Assimilation in Cardiovascular Fluid–Structure Interaction Problems: An Introduction. In: Bodnár, T., Galdi, G., Nečasová, Š. (eds) Fluid-Structure Interaction and Biomedical Applications. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0822-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-0348-0822-4_6
Published:
Publisher Name: Birkhäuser, Basel
Print ISBN: 978-3-0348-0821-7
Online ISBN: 978-3-0348-0822-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)