Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Revised Implementation of the Reverse Search Vertex Enumeration Algorithm

  • Chapter
Polytopes — Combinatorics and Computation

Part of the book series: DMV Seminar ((OWS,volume 29))

Abstract

This paper describes an improved implementation of the reverse search vertex enumeration/convex hull algorithm for d-dimensional convex polyhedra. The implementation uses a lexicographic ratio test to resolve degeneracy, works on bounded or unbounded polyhedra and uses exact arithmetic with all integer pivoting. It can also be used to compute the volume of the convex hull of a set of points. For a polyhedron with m inequalities indvariables and known extreme point, it finds all bases in time O(md)2 per basis. This implementation can handle problems of quite large size, especially for simple polyhedra (where each basis corresponds to a vertex and the complexity reduces to O (md) per vertex). Computational experience is included in the paper, including a comparison with an earlier implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. lrs home page, May 1999, ftp://mutt.cs.mcgill.ca/pub/C/lrs.html

  2. D. Avis and K. Fukuda: A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedraDiscrete Comput. Geometry8 (1992), 295–313.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Avis and L. Devroye: Estimating the number of vertices of a polyhedron, in: “Snapshots of Computational and Discrete Geometry” (D. Avis and P. Bose, eds.), Vol. 3, School of Computer Science, McGill University, 1994, pp. 179–190 ftp://www.mutt.cs.mcgill.ca/pub/doc/avis/AD94a.ps.gz

  4. D. Avis: A C implementation of the reverse search vertex enumeration algorithm, in:RIMS Kokyuroku872 (H. Imai, ed.), Kyoto University, May 1994, ftp://www.mutt.cs.mcgill.ca/pub/doc/avis/Av94a.ps.gz

  5. D. Avis and K. Fukuda: Reverse search for enumerationDiscrete AppliedMath. 6 (1996), 21–46.

    MathSciNet  Google Scholar 

  6. D. Avis, D. Bremner, and R. Seidel: How good are convex hull algorithms?Comput. Geometry: Theory Appl.7 (1997), 265–301.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Avis: Computational experience with the reverse search vertex enumeration algorithmOptimization Methods and Software 10(1998), 107–124.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. G. Bland: New finite pivoting rules for the simplex method, Math.Operations Research 2(1977), 103–107.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Bremner, K. Fukuda, and A. Marzetta: Primal-dual methods of vertex and facet enumerationDiscrete Comput. Geometry 20(1997), 333–358.

    Article  MathSciNet  Google Scholar 

  10. A. Brüngger, A. Marzetta, K. Fukuda, and J. Nievergelt: The parallel search bench ZRAM and its applications, 1997ftp://www.ftp.ifor.math.ethz.ch/pub/fukuda/reports

  11. B. Büeler, A. Enge, and K. Fukuda: Exact volume computation for polytopes: A practical study, this volume, pp. 131–154.

    Google Scholar 

  12. M. Bussieck and M. Luebbecke, The vertex set of a 0/1-polytope is stronglyDenumerable,Comput. Geometry: Theory Appl. 11(1998), 103–109.

    Article  MATH  Google Scholar 

  13. V. Chvátal: Linear Programming, W.H. Freeman 1983.

    Google Scholar 

  14. H. Edelsbrunner: Algorithms in Combinatorial Geometry, Springer-Verlag 1987.

    Google Scholar 

  15. J. Edmonds and J.-F. Maurras, Note sur les Q-matrices d’EdmondsRecherche Opérationelle (RAIRO) 31(1997), 203–209.

    MathSciNet  MATH  Google Scholar 

  16. G. H. Gonnet and R. Baeza-Yates: Handbook of Algorithms and Data Structures, 2nd Edition, Addison-Wesley 1991.

    Google Scholar 

  17. M. Hall and D. E. Knuth, Combinatorial analysis and computersAmer. Math. Monthly 72(1965), 21–28.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Ignizio and T. Cavalier: Linear Programming, Prentice Hall 1994.

    Google Scholar 

  19. D. E. Knuth: The Art of Computer Programming, Vol 2: Seminumerical Algorithms, Addison-Wesley 1981; Third edition 1998.

    Google Scholar 

  20. G. M. Ziegler: Lectures on Polytopes, Graduate Texts in Mathematics152,Springer-Verlag 1994, revised 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Avis, D. (2000). A Revised Implementation of the Reverse Search Vertex Enumeration Algorithm. In: Kalai, G., Ziegler, G.M. (eds) Polytopes — Combinatorics and Computation. DMV Seminar, vol 29. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8438-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8438-9_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6351-2

  • Online ISBN: 978-3-0348-8438-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics