Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 217))

  • 1987 Accesses

Abstract

One of the open issues in risk literature is the difference between risk perception and effective risk, especially when the risk is clearly defined and measured. Until now, the main focus has been given on the behaviour of individuals and the evidences of their biases according to some stimulus. Consequently, it is important to analyse what are the main reasons for those biases and identify the dimensions and mechanisms involved. To that purpose, we tackle the classic problem of tax fraud as a case study. In this paper, we will look into how agent based modelling methodology can help unfold the reasons why individuals commit errors of judgment when risk is involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gilbert, D.: Stumbling on Happiness, Knopf (2006) ISBN 1400042666

    Google Scholar 

  2. Schneier, B., Fear, B.: Thinking Sensibly about Security in an Uncertain World, pp. 26–27. Copernicus, New York (2003)

    Google Scholar 

  3. Slovic, P.: Perception of Risk Reflections on the Psychometric Paradigm. In: Krimsky, S., Golding, D. (eds.) Social Theories of Risk, pp. 117–152. Praeger, Westport (1992)

    Google Scholar 

  4. Sjöberg, L.: Consequences of perceived risk: Demand for mitigation. Journal of Risk Research 2 (1999)

    Google Scholar 

  5. Slovic, P., Fischhoff, B., Lichtenstein, S.: Why study risk perception. Risk Analysis Review 2(2) (1982)

    Google Scholar 

  6. Slovic, P., Fischhoff, B., Lichtenstein, S.: Facts and fears, Understanding the perceived risk in Scoeital risk assessment: How safe is safe enough? In: Schwing, R., Albers Jr., W.A. (eds.). Plenum, New York (1980)

    Google Scholar 

  7. Kahneman, D., Tversky, A.: A The Framing of Decisions and the Psychology of Choice Science. New Series 211(4481), 453–458 (1981)

    MATH  MathSciNet  Google Scholar 

  8. Brun, W.: Risk perception: Main issues, approached and findings. In: Wright, G., Ayton, P. (eds.) Subjective Probability, pp. 395–420. John Wiley and Sons, Chichester (1994)

    Google Scholar 

  9. Douglas, M.: Risk and Blame: Essays in Cultural Theory. Routledge, London (1992)

    Book  Google Scholar 

  10. Damasio, A.: Descartes’ Error Emotion, Reason, and the Human Brain. Penguin Group (USA), Inc. (1994)

    Google Scholar 

  11. Wachinger, G., Renn, O.: Risk Perception and Natural Hazards. Cap-Haz-Net WP3 Report, DIALOGIK Non-Profit Institute for Communication and Cooperative Research, Stuttgart (2010)

    Google Scholar 

  12. Renn, O., Rohrmann, B.: Cross-Cultural Risk Perception Research: State and Challenges. In: Renn, O., Rohrmann, B. (eds.) Cross-Cultural Risk Perception: A Survey of Empirical Studies, pp. 211–233. Kluwer, Dordrecht (2000)

    Chapter  Google Scholar 

  13. Renn, O.: Risk governance. Coping with uncertainty in a complex world. Earthscan, London (2008)

    Google Scholar 

  14. Breakwell, G.M.: The psychology of risk. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  15. Freeman, W.: The brain transforms sensory messages into conscious perceptions almost instantly Chaotic, collective activity involving millions of neurons seems essential for such rapid recognition. Scientific American 264(2), 78–85 (1991)

    Article  MathSciNet  Google Scholar 

  16. Christopoulos, G., Schultz, W.: Neural Correlates of Value, Risk, and Risk Aversion Contributing to Decision Making under Risk. Journal of Neuro-science 26(24), 6469–6472 (2009)

    Google Scholar 

  17. Kirchler, E., Muehlbacher, S., Kastlunger, B., Wahl, I.: Why Pay Taxes? A Review of Tax Compliance Decisions Andrew Young School of Policy Studies. Georgia State University (2007)

    Google Scholar 

  18. Sandmo, A.: The Theory of Tax Evasion: A Retrospective View. National Tax Journal LVIIl(4) ( December 2005)

    Google Scholar 

  19. Allingham, M.G., Sandmo, A.: Income tax evasion: A theoretical analysis. Journal of Public Economics 1(3-4), 323–338 (1972)

    Article  Google Scholar 

  20. Feld, L.P., Frey, B.: Trust Breeds Trust: How Taxpayers Are Treated. Economics of Governance 3, 87–99 (2002)

    Article  Google Scholar 

  21. Spicer, M.W., Hero, R.E.: Tax evasion and heuristics: a research note. Journal of Public Economics 26(2), 263–267 (1985)

    Article  Google Scholar 

  22. Mittone, L.: Dynamic behaviour in tax evasion: An experimental approach. The Journal of Socio-Economics 35(5), 813–835 (2006)

    Article  Google Scholar 

  23. Kahneman, D., Tversky, A.: Judgment under Uncertainty: Heuristics and Biases. Science, New Series 185(4157), 1124–1131 (1974)

    Google Scholar 

  24. Spicer, M.W., Lundstedt, S.B.: Understanding tax evasion. Public Finance 21(2), 295–305 (1976)

    Google Scholar 

  25. Mittone, L., Patelli, P.: Imitative behaviour in tax evasion. In: Stefansson, B., Luna, F. (eds.) Economic Simulations in Swarm: Agent-based Modelling and Object Oriented Programming, pp. 133–158. Kluwer, Amsterdam (2000)

    Chapter  Google Scholar 

  26. Davis, J.S., Hecht, G., Perkins, J.D.: Social behaviors, enforcement and tax compliance dynamics. Accounting Review 78, 39–69 (2003)

    Article  Google Scholar 

  27. Bloomquist, K. M.: Modeling taxpayers response to compliance improvement alternatives. Paper presented at the Annual Conference of the North American Association for Computational Social and Organizational Science (NAACSOS), Pittsburgh, PA (2004)

    Google Scholar 

  28. Antunes, L., Balsa, J., Urbano, P., Moniz, L., Roseta-Palma, C.: Tax compliance in a simulated heterogeneous multi-agent society. In: Sichman, J.S., Antunes, L. (eds.) MABS 2005. LNCS (LNAI), vol. 3891, pp. 147–161. Springer, Heidelberg (2006a)

    Chapter  Google Scholar 

  29. Korobow, A., Johnson, C., Axtell, R.: An Agent Based Model of Tax Compliance with Social Networks. National Tax Journal LX(3), 589–610 (2007)

    Google Scholar 

  30. Zaklan, G., Lima, F.W.S., Westerhoff, F.: Controlling tax evasion fluctuations. Physica A: Statistical Mechanics and its Applications 387, 5857–5861 (2008)

    Article  Google Scholar 

  31. Zaklan, G., Westerhoff, F., Stauffer, D.: Analysing tax evasion dynamics via the Ising model. Journal of Economic of Coordination and Interaction 4, 1–14 (2009a)

    Article  Google Scholar 

  32. Szabó, A., Gulyás, L., Tóth, I.J.: TAXSIM Agent Based Tax Evasion Simulator. In: 5th European Social Simulation Association Conference, ESSA 2008 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno Trindade Magessi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Magessi, N.T., Antunes, L. (2013). Modelling Agents’ Risk Perception. In: Omatu, S., Neves, J., Rodriguez, J., Paz Santana, J., Gonzalez, S. (eds) Distributed Computing and Artificial Intelligence. Advances in Intelligent Systems and Computing, vol 217. Springer, Cham. https://doi.org/10.1007/978-3-319-00551-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00551-5_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00550-8

  • Online ISBN: 978-3-319-00551-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics