Abstract
There are a number of alternative techniques for dealing with uncertainty. Here we discuss rough set, fuzzy rough set, and intuitionistic rough set approaches and how to incorporate uncertainty management using them in the relational database model. The impacts of rough set techniques on fundamental database concepts such as functional dependencies and information theory are also considered.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Atanassov, K.: Intuitionistic Fuzzy Sets. Fuzzy Sets Syst. 20, 87–96 (1986)
Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer-Verlag (2012)
Beaubouef, T., Petry F.: Rough Querying of Crisp Data in Relational Databases. Proceedings of Third International Workshop on Rough Sets and Soft Computing (RSSC’94), pp. 368–375, San Jose, California (1994)
Beaubouef, T., Petry, F.: Fuzzy Set Quantification of Roughness in a Rough Relational Database Model. Proceedings of Third IEEE International Conference on Fuzzy Systems, pp. 172–177, Orlando, Florida (1994)
Beaubouef, T., Petry, F.: Fuzzy rough set techniques for uncertainty processing in a relational database. Int. J. Intell. Syst. 15, 389–424 (2000)
Beaubouef, T., Petry F.: A rough set foundation for spatial data mining involving vague regions. Proceedings of FUZZ-IEEE’02, pp. 767–772, Honolulu, Hawaii (2002)
Beaubouef, T., Petry F.: Rough Functional Dependencies, 2004 Multiconferences: International Conference On Information and Knowledge Engineering (IKE’04), pp. 175–179, Las Vegas (2004)
Beaubouef, T., Petry, F.: Uncertainty modeling for database design using intuitionistic and rough set theory. Int. J. Intell. Fuzzy Syst. 20(3), 105–117 (2009)
Beaubouef, T., Petry F.: Imprecise Database Security and Information Measures., International J. Comput. Intell.: Theory Pract. 5(2), 61–7 (2010)
Beaubouef, T., Petry, F., Arora, G.: Information-theoretic measures of uncertainty for rough sets and rough relational databases. Inf. Sci. 109, 185–195 (1998)
Beaubouef, T., Petry, F., Buckles, B.: Extension of the relational database and its algebra with rough set techniques. Comput. Intell. 11, 233–245 (1995)
Bhandari, D., Pal, N.R.: Some new information measures for fuzzy sets. Inform. Sci. 67, 209–228 (1993)
Bosc, P., Gailbourg, M., Hamlin, G.: Fuzzy querying with SQL: extensions and implementation aspects. Fuzzy Sets Syst. 28(3), 333–339 (1988)
Bosc, P., Pivert, O.: Some approaches for relational databases flexible querying. J. Intell. Inf. Syst. 1, 323–354 (1992)
Bosc, P., Pivert, O.: SQLf : a relational database language for fuzzy querying. IEEE Trans. Fuzzy Syst. 3, 1–17 (1995)
Buckles, B., Petry, F.: A fuzzy model for relational databases. Int. J. Fuzzy Sets Syst. 7, 213–226 (1982)
Buckles, B., Petry, F.: Security and Fuzzy Databases, Proceedings of 1982 IEEE International Conference on Cybernetics and Society, pp. 622–625, Seattle WA (1982)
Buckles, B., Petry, F.: Information-theoretical characterization of fuzzy relational databases. IEEE Trans. Syst. Man Cybern. 13, 74–77 (1983)
Chanas, S., Kuchta, D.: Further remarks on the relation between rough and fuzzy sets. Fuzzy Sets Syst. 47, 391–394 (1992)
Codd, E.: A relational model of data for large shared data banks. Commun. ACM 13(6), 377–387 (1970)
de Luca, A., Termini, S.: A definition of a non-probabilistic entropy in the setting of fuzzy set theory. Inf. Control 20, 301–312 (1972)
Denning, D.: Secure statistical databases with random sample queries. Trans. Database Syst. 5(3), 291–315 (1980)
Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Slowinski, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory. Kluwer Academic Publishers, Boston (1992)
Dubois, D., Godo, L., Prade, H., Esteva, F.: An information-based discussion of vagueness. In: Cohen, H., Lefebvre, C. (eds.) Handbook of Categorization in Cognitive Science, Chap. 40, pp. 892–913 , Elsevier (2005)
Elmasri, R., Navathe, S.: Fundamentals of Database Systems, 5th edn. Pearson/Addison Wesley (2007)
Fung, K., Lam, C.: The database entropy concept and its application to the data allocation problem. INFOR 18(4), 354–363 (1980)
Klir, G., Folger, T.: Fuzzy Sets, Uncertainty, and Information. Prentice Hall, Englewood Cliffs NJ (1988)
Ligeza, A.: Granular Sets and Granular Relation. Intelligent Information Systems, pp. 331–340, Physica Verlag (2002)
Lin, T.Y.: Topological and fuzzy rough sets. In: Slowinski, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, pp. 287–304. Kluwer Academic Publishers, Boston (1992)
Makinouchi, A.: A Consideration on normal form of not-necessarily normalized relation in the relational data model. Proceedings of the 3rd International Conference on VLDB, pp. 447–453 (1977)
Motro, A., Marks, D., Jajodia, S.: Aggregation in relational databases: controlled disclosure of sensitive information. In: Proceedings of ESORICS 94, Third European Symposium on Research in Computer Security. Lecture Notes in Computer Science, vol. 875, pp. 431–445, Brighton, UK, Springer-Verlag (1994)
Nanda, S., Majumdar, S.: Fuzzy rough sets. Fuzzy Sets Syst. 45, 157160 (1992)
Nilsson, N.: Probabilistic Logic. Artif. Intell. 28(1), 71–87 (1986)
Ola, A., Ozsoyoglu, G.: Incomplete relational database models based on intervals. IEEE Trans. Knowl. Data Eng. 5, 293–308 (1993)
Pawlak, Z.: Rough sets. Int. J. Comput. Inform. Sci. 11, 341–356 (1982)
Pawlak, Z.: Rough sets and fuzzy sets. Fuzzy Sets Syst. 17, 99–102 (1985)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Norwell, MA (1991)
Prade, H., Testemale, T.: Generalizing database relational algebra for the treatment of incomplete/uncertain information and vague queries. Inform. Sci. 34, 115–143 (1984)
Quinlan, J.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)
Randell, D., Cui, Z., Cohn, A.: An interval logic for space based on connection. In: Proceedings of ECAI, pp. 394–398 (1992)
Shannon, C.: The mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)
Shenoi, S., Melton, A., Fan, L.: Functional dependencies and normal forms in the fuzzy relational database model. Inf. Sci. 60, 1–28 (1992)
Srinivasan, P.: The importance of rough approximations for information retrieval. Int. J. Man Mach. Stud. 34, 657–671 (1991)
Szmidt, E., Kacprzyk, J.: On distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 114, 505–518 (2000)
Szmidt, E., Kacprzyk, J.: Entropy for intuitionistic fuzzy sets. Fuzzy Sets Syst. 118, 467–477 (2001)
Umano, M.: FREEDOM-O: a fuzzy database system. In: Gupta, M., Sanchez, E. (eds.) Fuzzy Information and Studies in Fuzziness Series, pp. 339–347. Physica-Verlag, Heidelberg, Decision Processes, North-Holland (1982)
Wygralak, M.: Rough sets and fuzzy sets-some remarks on interrelations. Fuzzy Sets Syst. 29, 241–243 (1989)
Yao, P.: Fuzzy rough set and information entropy based feature selection for credit scoring. Proc. 6th Int. Conf. Fuzzy Syst. Knowl. Disc. 6, 247–251 (2009)
Yao, Y.: Semantics of Fuzzy Sets in Rough Set Theory. T. Rough Sets II, 297–318 (2004)
Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
Zadeh, L.A.: Possibility theory and soft data analysis. In: Cobb, L., Thrall, R.M. (eds.) Mathematical Frontiers of the Social and Policy Sciences. Westview, Boulder, CO., pp. 69–129 (1981)
Zemankova, M., Kandel, A.: Implementing Imprecision in Information Systems. Inf. Sci. 37, 107–141 (1985)
Acknowledgments
This work was supported by the Naval Research Laboratory’s Base Program, Program Element No. 0602435N
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Beaubouef, T., Petry, F. (2014). Information Systems Uncertainty Design and Implementation Combining: Rough, Fuzzy, and Intuitionistic Approaches. In: Pivert, O., Zadrożny, S. (eds) Flexible Approaches in Data, Information and Knowledge Management. Studies in Computational Intelligence, vol 497. Springer, Cham. https://doi.org/10.1007/978-3-319-00954-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-00954-4_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-00953-7
Online ISBN: 978-3-319-00954-4
eBook Packages: EngineeringEngineering (R0)