Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Comparative Study of Machine Learning Regression Methods on LiDAR Data: A Case Study

  • Conference paper
International Joint Conference SOCO’13-CISIS’13-ICEUTE’13

Abstract

Light Detection and Ranging (LiDAR) is a remote sensor able to extract vertical information from sensed objects. LiDAR-derived information is nowadays used to develop environmental models for describing fire behaviour or quantifying biomass stocks in forest areas. A multiple linear regression (MLR) with previous stepwise feature selection is the most common method in the literature to develop LiDAR-derived models. MLR defines the relation between the set of field measurements and the statistics extracted from a LiDAR flight. Machine learning has recently been paid an increasing attention to improve classic MLR results. Unfortunately, few studies have been proposed to compare the quality of the multiple machine learning approaches. This paper presents a comparison between the classic MLR-based methodology and common regression techniques in machine learning (neural networks, regression trees, support vector machines, nearest neighbour, and ensembles such as random forests). The selected techniques are applied to real LiDAR data from two areas in the province of Lugo (Galizia, Spain). The results show that support vector regression statistically outperforms the rest of techniques when feature selection is applied. However, its performance cannot be said statistically different from that of Random Forests when previous feature selection is skipped.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Garcia, M., Riano, D., Chuvieco, E., Danson, F.M.: Estimating biomass carbon stocks for a mediterranean forest in central spain using LiDAR height and intensity data. Remote Sensing of Environment 114(4), 816–830 (2010)

    Article  Google Scholar 

  2. Mutlu, M., Popescu, S.C., Stripling, C., Spencer, T.: Mapping surface fuel models using LiDAR and multispectral data fusion for fire behavior. Remote Sensing of Environment 112(1), 274–285 (2008)

    Article  Google Scholar 

  3. Gonzalez-Ferreiro, E., Dieguez-Aranda, U., Gonçalves-Seco, L., Crecente, R., Miranda, D.: Estimation of biomass in eucalyptus globulus labill. forests using different LiDAR sampling densities. In: Proceedings of ForestSat (2010)

    Google Scholar 

  4. Muss, J.D., Mladenoff, D.J., Townsend, P.A.: A pseudo-waveform technique to assess forest structure using discrete LiDAR data. Remote Sensing of Environment 115(3), 824–835 (2010)

    Article  Google Scholar 

  5. Osborne, J., Waters, E.: Four assumptions of multiple regression that researchers should always test. Practical Assessment, Research and Evaluation 8(2) (2002)

    Google Scholar 

  6. Salas, C., Ene, L., Gregoire, T.G., Næsset, E., Gobakken, T.: Modelling tree diameter from airborne laser scanning derived variables: A comparison of spatial statistical models. Remote Sensing of Environment 114(6), 1277–1285 (2010)

    Article  Google Scholar 

  7. Hudak, A.T., Crookston, N.L., Evans, J.S., Halls, D.E., Falkowski, M.J.: Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LIDAR data. Remote Sensing of Environment 112, 2232–2245 (2008)

    Article  Google Scholar 

  8. Chen, G., Hay, G.J.: A support vector regression approach to estimate forest biophysical parameters at the object level using airborne lidar transects and quickbird data. Photogrammetric Engineering and Remote Sensing 77(7), 733–741 (2011)

    Google Scholar 

  9. Zhao, K., Popescu, S., Meng, X., Pang, Y., Agca, M.: Characterizing forest canopy structure with lidar composite metrics and machine learning. Remote Sensing of Environment 115(8), 1978–1996 (2011)

    Article  Google Scholar 

  10. Latifi, H., Nothdurft, A., Koch, B.: Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: Application of multiple optical/LiDAR-derived predictors. Forestry 83(4), 395–407 (2010)

    Article  Google Scholar 

  11. Gleason, C.J., Im, J.: Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sensing of Environment 125, 80–91 (2012)

    Article  Google Scholar 

  12. Goncalves-Seco, L., Gonzalez-Ferreiro, E., Dieguez-Aranda, U., Fraga-Bugallo, B., Crecente, R., Miranda, D.: Assessing attributes of high density eucalyptus globulus stands using airborne laser scanner data. International Journal of Remote Sensing 32(24), 9821–9841 (2011)

    Article  Google Scholar 

  13. Gonzalez-Ferreiro, E., Dieguez-Aranda, U., Miranda, D.: Estimation of stand variables in pinus radiata d. don plantations using different lidar pulse densities. Forestry 85(2), 281–292 (2012)

    Article  Google Scholar 

  14. Dieguez-Aranda, U., et al.: Herramientas selvicolas para la gestion forestal sostenible en Galicia. Xunta de Galicia (2009)

    Google Scholar 

  15. McGaughey, R.: FUSION/LDV: Software for LIDAR Data Analysis and Visualization. US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Seattle (2009)

    Google Scholar 

  16. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: An update. SIGKDD Explorations 11(1) (2009)

    Google Scholar 

  17. Hughes, G.F.: On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory 14, 55–63 (1968)

    Article  Google Scholar 

  18. Parejo, J.A., García, J., Ruiz-Cortés, A., Riquelme, J.C.: Statservice: Herramienta de análisis estadístico como soporte para la investigación con metaheurísticas. In: Actas del VIII Congreso Expañol sobre Metaheurísticas, Algoritmos Evolutivos y Bio-inspirados (2012)

    Google Scholar 

  19. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Luengo, J., Garcia, S., Herrera, F.: A study on the use of statistical tests for experimentation with neural networks: Analysis of parametric test conditions and non-parametric tests. Expert Systems with Applications 36, 7798–7808 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Garcia-Gutierrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Garcia-Gutierrez, J., Martínez-Álvarez, F., Troncoso, A., Riquelme, J.C. (2014). A Comparative Study of Machine Learning Regression Methods on LiDAR Data: A Case Study. In: Herrero, Á., et al. International Joint Conference SOCO’13-CISIS’13-ICEUTE’13. Advances in Intelligent Systems and Computing, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-319-01854-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01854-6_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01853-9

  • Online ISBN: 978-3-319-01854-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics