Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Augmenting Auto-context with Global Geometric Features for Spinal Cord Segmentation

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8184))

Included in the following conference series:

Abstract

Anatomical shape variations are typically difficult to model and parametric or hand-crafted models can lead to ill-fitting segmentations. This difficulty can be addressed with a framework like auto-context, that learns to jointly detect and regularize a segmentation. However, mis-segmentation can still occur when a desired structure, such as the spinal cord, has few locally distinct features. High-level knowledge at a global scale (e.g. an MRI contains a single connected spinal cord) is needed to regularize these candidate segmentations. To encode high-level knowledge, we propose to augment the auto-context framework with global geometric features extracted from the detected candidate shapes. Our classifier then learns these high-level rules and rejects falsely detected shapes. To validate our method we segment the spinal cords from 20 MRI volumes composed of patients with and without multiple sclerosis and demonstrate improvements in accuracy, speed, and manual effort required when compared to state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, M., Carass, A., Cuzzocreo, J., Bazin, P.L., Reich, D.S., Prince, J.L.: Topology preserving automatic segmentation of the spinal cord in magnetic resonance images. In: IEEE ISBI, pp. 1737–1740 (2011)

    Google Scholar 

  2. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Foundations and Trends® in Computer Graphics and Vision 7(2-3), 81–227 (2011)

    Article  MATH  Google Scholar 

  3. Horsfield, M.A., Sala, S., Neema, M., Absinta, M., Bakshi, A., Sormani, M.P., Rocca, M.A., Bakshi, R., Filippi, M.: Rapid semi-automatic segmentation of the spinal cord from magnetic resonance images: Application in multiple sclerosis. Neuroimage 50(2), 446–455 (2010)

    Article  Google Scholar 

  4. Kawahara, J., McIntosh, C., Tam, R., Hamarneh, G.: Globally optimal spinal cord segmentation using a minimal path in high dimensions. In: IEEE ISBI, pp. 836–839 (2013)

    Google Scholar 

  5. Kontschieder, P., Kohli, P., Shotton, J., Criminisi, A.: GeoF: Geodesic forests for learning coupled predictors. In: IEEE CVPR (2013)

    Google Scholar 

  6. McIntosh, C., Hamarneh, G.: Spinal crawlers: Deformable organisms for spinal cord segmentation and analysis. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 808–815. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. McIntosh, C., Hamarneh, G., Toom, M., Tam, R.: Spinal cord segmentation for volume estimation in healthy and multiple sclerosis subjects using crawlers and minimal paths. In: IEEE HISB, pp. 25–31 (2011)

    Google Scholar 

  8. Rocca, M., Horsfield, M., Sala, S., Copetti, M., Valsasina, P., Mesaros, S., Martinelli, V., Caputo, D., Stosic-Opincal, T., Drulovic, J., Comi, G., Filippi, M.: A multicenter assessment of cervical cord atrophy among MS clinical phenotypes. Neurology 76(24), 2096–2102 (2011)

    Article  Google Scholar 

  9. Szummer, M., Kohli, P., Hoiem, D.: Learning CRFs using graph cuts. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 582–595. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Tench, C.R., Morgan, P.S., Constantinescu, C.S.: Measurement of cervical spinal cord cross-sectional area by MRI using edge detection and partial volume correction. J. Magn. Reson. Imaging 21(3), 197–203 (2005)

    Article  Google Scholar 

  11. Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE TPAMI 32(10), 1744–1757 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Kawahara, J., McIntosh, C., Tam, R., Hamarneh, G. (2013). Augmenting Auto-context with Global Geometric Features for Spinal Cord Segmentation. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds) Machine Learning in Medical Imaging. MLMI 2013. Lecture Notes in Computer Science, vol 8184. Springer, Cham. https://doi.org/10.1007/978-3-319-02267-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02267-3_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02266-6

  • Online ISBN: 978-3-319-02267-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics