Abstract
Althogh the diversity of mobile devices brings in image retargeting technique to effectively display images on various screens, no existing image retargeting method can handle all images well. In this paper, we propose a novel approach to select suitable image retargeting methods solely based on original image characteristic, which can obtain acceptable selection accuracy with low computation cost. First, the original image is manually annotated with several simple features. Then, suitable methods are automatically selected from candidate image retargeting methods using multi-instance multi-label learning. Finally, target images are generated by the selected methods. Experiments demonstrate the effectiveness of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences. J. Mol. Biol. 147, 195–197 (1981)
May, P., Ehrlich, H.C., Steinke, T.: ZIB Structure Prediction Pipeline: Composing a Complex Biological Workflow through Web Services. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 1148–1158. Springer, Heidelberg (2006)
Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (1999)
Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid Information Services for Distributed Resource Sharing. In: 10th IEEE International Symposium on High Performance Distributed Computing, pp. 181–184. IEEE Press, New York (2001)
Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: an Open Grid Services Architecture for Distributed Systems Integration. Technical report, Global Grid Forum (2002)
National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov
Cho, S., Choi, H., Matsushita, Y., Lee, S.: Image Retargeting Using Importance Diffusion. In: IEEE International Conference on Image Processing, Cairo (2009)
Rubinstein, M., Shamir, A., Avidan, S.: Improved Seam Carving for Video Retargeting. In: ACM International Conference on Computer Graphics and Interactive Techniques, New York (2008)
Wolf, L., Guttmann, M., Cohen-Or, D.: Non-homogeneous Content-driven video-retargeting. In: IEEE International Conference on Computer Vision, Rio de Janeiro (2007)
Wang, Y.S., Tai, C.L., Sorkine, O., Lee, T.Y.: Optimized Scale-and-stretch for Image Resizing. In: ACM International Conference on Computer Graphics and Interactive Techniques in Asia, Singapore (2008)
Rubinstein, M., Shamir, A., Avidan, S.: Multi-operator Media Retargeting. In: ACM International Conference on Computer Graphics and Interactive Techniques, New Orleans (2009)
Pritch, Y., Kav-Venaki, E., Peleg, S.: Shift-map Image Editing. In: IEEE International Conference on Computer Vision, Kyoto (2009)
Krähenbühl, P., Lang, M., Hornung, A., Gross, M.: A System for Retargeting of Streaming Video. In: ACM International Conference on Computer Graphics and Interactive Techniques in Asia, Yokohama (2009)
Rubinstein, M., Gutierrez, D., Sorkine, O., Shamir, A.: A Comparative Study of Image Retargeting. In: ACM International Conference on Computer Graphics and Interactive Techniques in Asia, Seoul (2010)
Zhou, Z.H., Zhang, M.L., Huang, S.J., Li, Y.F.: Multi-instance Multi-label Learning. Artificial Intelligence 176(1), 2291–2320 (2012)
Edgar, G.A.: Measure, Topology, and Fractal Geometry. Springer, Berlin (1990)
Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning Multi-label Scene Classification. Pattern Recognition 37(9), 1757–1771 (2004)
RetargetMe Dataset, http://people.csail.mit.edu/mrub/retargetme/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Song, M., Ren, T., Liu, Y., Bei, J., Zhao, Z. (2013). Selecting Suitable Image Retargeting Methods with Multi-instance Multi-label Learning. In: Imamura, K., Usui, S., Shirao, T., Kasamatsu, T., Schwabe, L., Zhong, N. (eds) Brain and Health Informatics. BHI 2013. Lecture Notes in Computer Science(), vol 8211. Springer, Cham. https://doi.org/10.1007/978-3-319-02753-1_42
Download citation
DOI: https://doi.org/10.1007/978-3-319-02753-1_42
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02752-4
Online ISBN: 978-3-319-02753-1
eBook Packages: Computer ScienceComputer Science (R0)