Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Selecting Suitable Image Retargeting Methods with Multi-instance Multi-label Learning

  • Conference paper
Brain and Health Informatics (BHI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8211))

Included in the following conference series:

Abstract

Althogh the diversity of mobile devices brings in image retargeting technique to effectively display images on various screens, no existing image retargeting method can handle all images well. In this paper, we propose a novel approach to select suitable image retargeting methods solely based on original image characteristic, which can obtain acceptable selection accuracy with low computation cost. First, the original image is manually annotated with several simple features. Then, suitable methods are automatically selected from candidate image retargeting methods using multi-instance multi-label learning. Finally, target images are generated by the selected methods. Experiments demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences. J. Mol. Biol. 147, 195–197 (1981)

    Article  Google Scholar 

  2. May, P., Ehrlich, H.C., Steinke, T.: ZIB Structure Prediction Pipeline: Composing a Complex Biological Workflow through Web Services. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 1148–1158. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  4. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid Information Services for Distributed Resource Sharing. In: 10th IEEE International Symposium on High Performance Distributed Computing, pp. 181–184. IEEE Press, New York (2001)

    Chapter  Google Scholar 

  5. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: an Open Grid Services Architecture for Distributed Systems Integration. Technical report, Global Grid Forum (2002)

    Google Scholar 

  6. National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov

  7. Cho, S., Choi, H., Matsushita, Y., Lee, S.: Image Retargeting Using Importance Diffusion. In: IEEE International Conference on Image Processing, Cairo (2009)

    Google Scholar 

  8. Rubinstein, M., Shamir, A., Avidan, S.: Improved Seam Carving for Video Retargeting. In: ACM International Conference on Computer Graphics and Interactive Techniques, New York (2008)

    Google Scholar 

  9. Wolf, L., Guttmann, M., Cohen-Or, D.: Non-homogeneous Content-driven video-retargeting. In: IEEE International Conference on Computer Vision, Rio de Janeiro (2007)

    Google Scholar 

  10. Wang, Y.S., Tai, C.L., Sorkine, O., Lee, T.Y.: Optimized Scale-and-stretch for Image Resizing. In: ACM International Conference on Computer Graphics and Interactive Techniques in Asia, Singapore (2008)

    Google Scholar 

  11. Rubinstein, M., Shamir, A., Avidan, S.: Multi-operator Media Retargeting. In: ACM International Conference on Computer Graphics and Interactive Techniques, New Orleans (2009)

    Google Scholar 

  12. Pritch, Y., Kav-Venaki, E., Peleg, S.: Shift-map Image Editing. In: IEEE International Conference on Computer Vision, Kyoto (2009)

    Google Scholar 

  13. Krähenbühl, P., Lang, M., Hornung, A., Gross, M.: A System for Retargeting of Streaming Video. In: ACM International Conference on Computer Graphics and Interactive Techniques in Asia, Yokohama (2009)

    Google Scholar 

  14. Rubinstein, M., Gutierrez, D., Sorkine, O., Shamir, A.: A Comparative Study of Image Retargeting. In: ACM International Conference on Computer Graphics and Interactive Techniques in Asia, Seoul (2010)

    Google Scholar 

  15. Zhou, Z.H., Zhang, M.L., Huang, S.J., Li, Y.F.: Multi-instance Multi-label Learning. Artificial Intelligence 176(1), 2291–2320 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Edgar, G.A.: Measure, Topology, and Fractal Geometry. Springer, Berlin (1990)

    Google Scholar 

  17. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning Multi-label Scene Classification. Pattern Recognition 37(9), 1757–1771 (2004)

    Article  Google Scholar 

  18. RetargetMe Dataset, http://people.csail.mit.edu/mrub/retargetme/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Song, M., Ren, T., Liu, Y., Bei, J., Zhao, Z. (2013). Selecting Suitable Image Retargeting Methods with Multi-instance Multi-label Learning. In: Imamura, K., Usui, S., Shirao, T., Kasamatsu, T., Schwabe, L., Zhong, N. (eds) Brain and Health Informatics. BHI 2013. Lecture Notes in Computer Science(), vol 8211. Springer, Cham. https://doi.org/10.1007/978-3-319-02753-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02753-1_42

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02752-4

  • Online ISBN: 978-3-319-02753-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics