Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Heyting-Brouwer Rough Set Logic

  • Conference paper
Knowledge and Systems Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 245))

Abstract

A rough set logic based on Heyting-Brouwer algebras HBRSL is proposed as a basis for reasoning about rough information. It is an extension of Düntsch’s logic with intuitionistic implication, and is seen as a variant of Heyting- Brouwer logic. A Kripke semantics and natural deduction for the logic are presented and the completeness theorem is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akama, S.: The Gentzen-Kripke construction of the intermediate logic LQ. Notre Dame Journal of Formal Logic 33, 148–153 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Düntsch, I.: A logic for rough sets. Theoretical Computer Science 179, 427–436 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Orlowska, E.: Modal logics in the theory of information systems. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 30, 213–222 (1988)

    Article  MathSciNet  Google Scholar 

  4. Orlowska, E.: Logic for reasoning about knowledge. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 35, 559–572 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht (1990)

    Google Scholar 

  7. Pomykala, J., Pomykala, J.A.: The stone algebra of rough sets. Bulletin of Polish Academy of Science, Mathematics 36, 495–508 (1988)

    MathSciNet  MATH  Google Scholar 

  8. Rauszer, C.: Semi-Boolean algebras and their applications to intuitionistic logic with dual operations. Fundamenta Mathematicae 83, 219–249 (1974)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiki Akama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Akama, S., Murai, T., Kudo, Y. (2014). Heyting-Brouwer Rough Set Logic. In: Huynh, V., Denoeux, T., Tran, D., Le, A., Pham, S. (eds) Knowledge and Systems Engineering. Advances in Intelligent Systems and Computing, vol 245. Springer, Cham. https://doi.org/10.1007/978-3-319-02821-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02821-7_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02820-0

  • Online ISBN: 978-3-319-02821-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics