Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Kernel Collaborative Representation with Regularized Least Square for Face Recognition

  • Conference paper
Biometric Recognition (CCBR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8232))

Included in the following conference series:

  • 2457 Accesses

Abstract

Sparse representation based classification (SRC) has received much attention in computer vision and pattern recognition. SRC is very slow since it needs optimize an objective function with L1-Norm. SRC consists of two parts: collaborative representation and L1-norm constrain. Based on SRC, collaborative representation based classification with regularized least square (CRC_RLS) is prosed. CRC_RLS is a linear method in nature. There are many variations of illumination, expression and gesture in face images. So face recognition is a nonlinear case. Here we propose a kernel collaborative representation based classification with regularized least square (Kernel CRC_RLS, KCRC_RLS) by implicitly mapping the sample into high-dimensional space via kernel tricks. The experimental results on FERET face database demonstrate that Kernel CRC_RLS is effective in classification, leading to promising performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albert, A.M., Ricanek, K., Patterson, E.: A review of the literature on the aging adult skull and face: Implications for forensic science research and applications. Forensic Science International 172, 1–9 (2007)

    Article  Google Scholar 

  2. Makinen, E., Raisamo, R.: Evaluation of gender classification methods with automatically detected and aligned face. IEEE Trans. Pattern Anal. Mach Intell 30(3), 541–547 (2008)

    Article  Google Scholar 

  3. Bekios-Calfa, J., Buenaposada, J.M., Baumela, L.: Revisiting linear discriminant techniques in gender recognition. IEEE Trans. Pattern Anal. Mach Intell. 33(4), 858–864 (2011)

    Article  Google Scholar 

  4. Kotsiantis, S.B.: Supervised machine learning: a review of classification techniques. Informatica 31, 249–268 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  6. Yu, K., Ji, L., Zhang, X.: Kernel nearest-neighbor algorithm. Neural Processing Letters 15, 147–156 (2002)

    Article  MATH  Google Scholar 

  7. Li, S.Z., Lu, J.: Face recognition using the nearest feature line method. IEEE Transactions on Neural Network 10(2), 439–443 (1999)

    Article  Google Scholar 

  8. Zheng, W., Zhao, L., Zou, C.: Locally nearest neighbour classifiers for pattern recognition. Pattern Recognition 37(6), 1307–1309 (2004)

    Article  MATH  Google Scholar 

  9. Lou, Z., Jin, Z.: Novel adaptive nearest neighbour classifiers based on hit-distance. In: Proceedings of the 18th International Conference on Pattern Recognition (ICPR 2006), August 20-24, vol. 3, pp. 87–90 (2006)

    Google Scholar 

  10. Gao, Q., Wang, Z.: Center-based nearest neighbor classifier. Pattern Recognition 40(1), 346–349 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Shen, F., Hasegawa, O.: A fast nearest neighbor classifier based on self-organizing incremental neural network. Neural Networks 21(10), 1537–1547 (2008)

    Article  MATH  Google Scholar 

  12. Mitani, Y., Hamamoto, Y.: A local mean-based nonparametric classifier. Pattern Recognition Letters 27(10), 1151–1159 (2006)

    Article  Google Scholar 

  13. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw patches. In: CVPR 2008 (2008)

    Google Scholar 

  14. Rao, S., Tron, R., Vidal, R., Ma, Y.: Motion segmentation via robust subspace separation in the presence of outlying, incomplete, and corrupted trajectories. In: CVPR 2008 (2008)

    Google Scholar 

  15. Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for image and video restoration. SIAM MMS 7(1), 214–241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3373–3376 (2008)

    Google Scholar 

  17. Wright, J., Yang, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2), 210–227 (2009)

    Article  Google Scholar 

  18. Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: which helps face recognition. In: ICCV 2011 (2011)

    Google Scholar 

  19. Muller, K.-R., Mika, S., Ratsch, G., Tsuda, K., Scholkopf, B.: An introduction to kernel-based learning algorithms. IEEE Trans. Neural Networks 12(2), 181–201 (2001)

    Article  Google Scholar 

  20. Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Mullers, K.R.: Fisher discriminant analysis with kernels. In: Proc. IEEE Int’l Workshop Neural Networks for Signal Processing IX, vol. 199, pp. 41–48 (1999)

    Google Scholar 

  21. Yang, J., Frangi, A.F., Yang, J.Y., Zhang, D.: KPCA plus LDA: a complete kernel Fisher discriminant frame work for feature extraction and recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 27(2), 230–244 (2005)

    Article  Google Scholar 

  22. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face recognition algorithms. IEEE Transactions on Pattern Ana1ysis and Machine Intel1igence 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  23. Phillips, P.J.: The facial recognition technology (FERET) database (2004), http://www.itl.nist.gov/iad/humanid/feret/feret_master.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, Z., Yang, W., Yin, J., Sun, C. (2013). Kernel Collaborative Representation with Regularized Least Square for Face Recognition. In: Sun, Z., Shan, S., Yang, G., Zhou, J., Wang, Y., Yin, Y. (eds) Biometric Recognition. CCBR 2013. Lecture Notes in Computer Science, vol 8232. Springer, Cham. https://doi.org/10.1007/978-3-319-02961-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02961-0_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02960-3

  • Online ISBN: 978-3-319-02961-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics