Abstract
Recently sparse representation has been widely used in face recognition. It has been shown that under maximum likelihood estimation of the sparse coding problem, robustness of face representation and recognition can be improved. In this paper, we propose to weight spatial locations based on their discriminabilities in sparse coding for robust face recognition. More specifically, we estimate the weights at image locations based on a class-specific discriminative scheme, so as to highlight locations in face images that are important for classification. Furthermore, since neighboring locations in face images are often strongly correlated, spatial weights are smoothed to enforce similar values at adjacent locations. Extensive experiments on benchmark face databases demonstrate that our method is very effective in dealing with face occlusion, corruption, lighting and expression changes, etc.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zhao, W.Y., Chellppa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Survey 35(4), 399–458 (2003)
Su, Y., Shan, S., Chen, X.L., Gao, W.: Hierarchical ensemble of global and local classifiers for face recognition. IEEE Trans. IP 18(8), 1885–1896 (2009)
Zhang, W.C., Shan, S., Gao, W., Chen, X.L.: Local Gabor binary pattern histogram sequence (LGBPHS): A novel non-statistical model for face representation and recognition. In: ICCV, pp. 786–791 (2005)
Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neuroscience 3(1), 71–86 (1991)
Belhumeur, P.N., Hespanha, J.P., Kriengman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. PAMI 19, 711–720 (1997)
Heisele, B., Ho, P., Poggio, T.: Face recognition with support vector machine: Global versus component-based approach. In: ICCV, pp. 688–694 (2001)
He, X., Niyogi, P.: Locality preserving projections. In: NIPS (2003)
Yang, M., Zhang, L.: Gabor feature based sparse representation for face recognition with Gabor occlusion dictionar. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 448–461. Springer, Heidelberg (2010)
Zhang, L., Zhu, P., Hu, Q., Zhang, D.: A linear subspace learning approach via sparse coding. In: ICCV, pp. 755–761 (2011)
He, X., Cai, D., Yan, S., Zhang, H.-J.: Neighborhood preserving embedding. In: ICCV, pp. 1208–1213 (2005)
Yang, M., Zhang, L., Feng, X., Zhang, D.: Fisher discrimination dictionary learning for sparse representation. In: ICCV, pp. 543–550 (2011)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. Wiley Interscience, Hoboken (2000)
Wright, J., Ma, Y.: Dense error correction via l1-norm minimization. IEEE Trans. IT 56(7), 3540–3560 (2010)
Martinez, A., Benavente, R.: The AR face database. Technical Report 24, CVC (1998)
Yan, S., Xu, D., Zhang, B., Zhang, H.-J., Yang, Q., Lin, S.: Graph embedding and extension: A general framework for dimensionality reduction. IEEE Trans. PAMI 29(1), 40–51 (2007)
Chen, H.-T., Chang, H.-W., Liu, T.-L.: Local discriminant embedding and its variants. In: CVPR, pp. 846–853 (2005)
Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society B 58(1), 267–288 (1996)
Yang, M., Zhang, L., Yang, J., Zhang, D.: Robust sparse coding for face recognition. In: CVPR, pp. 625–632 (2011)
Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. PAMI 23(6), 643–660 (2001)
Lee, K., Ho, J., Kriegman, D.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. PAMI 27(5), 684–698 (2005)
Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. PAMI 31(2), 210–227 (2009)
Feng, J., Ni, B., Tian, Q., Yan, S.: Geometric l p -norm feature pooling for image classification. In: CVPR, pp. 2697–2703 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Zhang, P., Zheng, H., Yang, C. (2013). Robust Face Recognition Based on Spatially-Weighted Sparse Coding. In: Sun, Z., Shan, S., Yang, G., Zhou, J., Wang, Y., Yin, Y. (eds) Biometric Recognition. CCBR 2013. Lecture Notes in Computer Science, vol 8232. Springer, Cham. https://doi.org/10.1007/978-3-319-02961-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-02961-0_3
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02960-3
Online ISBN: 978-3-319-02961-0
eBook Packages: Computer ScienceComputer Science (R0)