Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust Face Recognition Based on Spatially-Weighted Sparse Coding

  • Conference paper
Biometric Recognition (CCBR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8232))

Included in the following conference series:

  • 2466 Accesses

Abstract

Recently sparse representation has been widely used in face recognition. It has been shown that under maximum likelihood estimation of the sparse coding problem, robustness of face representation and recognition can be improved. In this paper, we propose to weight spatial locations based on their discriminabilities in sparse coding for robust face recognition. More specifically, we estimate the weights at image locations based on a class-specific discriminative scheme, so as to highlight locations in face images that are important for classification. Furthermore, since neighboring locations in face images are often strongly correlated, spatial weights are smoothed to enforce similar values at adjacent locations. Extensive experiments on benchmark face databases demonstrate that our method is very effective in dealing with face occlusion, corruption, lighting and expression changes, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhao, W.Y., Chellppa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Survey 35(4), 399–458 (2003)

    Article  Google Scholar 

  2. Su, Y., Shan, S., Chen, X.L., Gao, W.: Hierarchical ensemble of global and local classifiers for face recognition. IEEE Trans. IP 18(8), 1885–1896 (2009)

    MathSciNet  Google Scholar 

  3. Zhang, W.C., Shan, S., Gao, W., Chen, X.L.: Local Gabor binary pattern histogram sequence (LGBPHS): A novel non-statistical model for face representation and recognition. In: ICCV, pp. 786–791 (2005)

    Google Scholar 

  4. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neuroscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  5. Belhumeur, P.N., Hespanha, J.P., Kriengman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. PAMI 19, 711–720 (1997)

    Article  Google Scholar 

  6. Heisele, B., Ho, P., Poggio, T.: Face recognition with support vector machine: Global versus component-based approach. In: ICCV, pp. 688–694 (2001)

    Google Scholar 

  7. He, X., Niyogi, P.: Locality preserving projections. In: NIPS (2003)

    Google Scholar 

  8. Yang, M., Zhang, L.: Gabor feature based sparse representation for face recognition with Gabor occlusion dictionar. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 448–461. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Zhang, L., Zhu, P., Hu, Q., Zhang, D.: A linear subspace learning approach via sparse coding. In: ICCV, pp. 755–761 (2011)

    Google Scholar 

  10. He, X., Cai, D., Yan, S., Zhang, H.-J.: Neighborhood preserving embedding. In: ICCV, pp. 1208–1213 (2005)

    Google Scholar 

  11. Yang, M., Zhang, L., Feng, X., Zhang, D.: Fisher discrimination dictionary learning for sparse representation. In: ICCV, pp. 543–550 (2011)

    Google Scholar 

  12. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. Wiley Interscience, Hoboken (2000)

    MATH  Google Scholar 

  13. Wright, J., Ma, Y.: Dense error correction via l1-norm minimization. IEEE Trans. IT 56(7), 3540–3560 (2010)

    Article  Google Scholar 

  14. Martinez, A., Benavente, R.: The AR face database. Technical Report 24, CVC (1998)

    Google Scholar 

  15. Yan, S., Xu, D., Zhang, B., Zhang, H.-J., Yang, Q., Lin, S.: Graph embedding and extension: A general framework for dimensionality reduction. IEEE Trans. PAMI 29(1), 40–51 (2007)

    Article  Google Scholar 

  16. Chen, H.-T., Chang, H.-W., Liu, T.-L.: Local discriminant embedding and its variants. In: CVPR, pp. 846–853 (2005)

    Google Scholar 

  17. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Yang, M., Zhang, L., Yang, J., Zhang, D.: Robust sparse coding for face recognition. In: CVPR, pp. 625–632 (2011)

    Google Scholar 

  19. Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. PAMI 23(6), 643–660 (2001)

    Article  Google Scholar 

  20. Lee, K., Ho, J., Kriegman, D.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. PAMI 27(5), 684–698 (2005)

    Article  Google Scholar 

  21. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. PAMI 31(2), 210–227 (2009)

    Article  Google Scholar 

  22. Feng, J., Ni, B., Tian, Q., Yan, S.: Geometric l p -norm feature pooling for image classification. In: CVPR, pp. 2697–2703 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, P., Zheng, H., Yang, C. (2013). Robust Face Recognition Based on Spatially-Weighted Sparse Coding. In: Sun, Z., Shan, S., Yang, G., Zhou, J., Wang, Y., Yin, Y. (eds) Biometric Recognition. CCBR 2013. Lecture Notes in Computer Science, vol 8232. Springer, Cham. https://doi.org/10.1007/978-3-319-02961-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02961-0_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02960-3

  • Online ISBN: 978-3-319-02961-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics