Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Event Detection Using Quantized Binary Code and Spatial-Temporal Locality Preserving Projections

  • Conference paper
AI 2013: Advances in Artificial Intelligence (AI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8272))

Included in the following conference series:

Abstract

We propose a new video manifold learning method for event recognition and anomaly detection in crowd scenes. A novel feature descriptor is proposed to encode regional optical flow features of video frames, where quantization and binarization of the feature code are employed to improve the differentiation of crowd motion patterns. Based on the new feature code, we introduce a new linear dimensionality reduction algorithm called “Spatial-Temporal Locality Preserving Projections” (STLPP). The generated low-dimensional video manifolds preserve both intrinsic spatial and temporal properties. Extensive experiments have been carried out on two benchmark datasets and our results compare favourably with the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nguyen, H.T., Ji, Q., Smeulders, A.W.: Spatio-temporal context for robust multitarget tracking. IEEE TPAMI 29(1), 52–64 (2007)

    Article  Google Scholar 

  2. Andrade, E.L., Blunsden, S., Fisher, R.B.: Modelling crowd scenes for event detection. In: Proc. ICPR 2006, vol. 1, pp. 175–178 (2006)

    Google Scholar 

  3. Adam, A., Rivlin, E., Shimshoni, I., Reinitz, D.: Robust real-time unusual event detection using multiple fixed-location monitors. IEEE TPAMI 30(3), 555–560 (2008)

    Article  Google Scholar 

  4. Kratz, L., Nishino, K.: Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In: Proc. CVPR 2009, pp. 1446–1453 (2009)

    Google Scholar 

  5. Ke, Y., Sukthankar, R., Hebert, M.: Event detection in crowded videos. In: Proc. ICCV 2007, pp. 1–8 (2007)

    Google Scholar 

  6. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: Proc. CVPR 2009, pp. 935–942 (2009)

    Google Scholar 

  7. Wu, S., Moore, B.E., Shah, M.: Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes. In: Proc. CVPR 2010, pp. 2054–2060 (2010)

    Google Scholar 

  8. Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection. In: Proc. CVPR 2011, pp. 3449–3456 (2011)

    Google Scholar 

  9. Tziakos, I., Cavallaro, A., Xu, L.Q.: Event monitoring via local motion abnormality detection in non-linear subspace. Neurocomputing 73(10), 1881–1891 (2010)

    Article  Google Scholar 

  10. Thida, M., Eng, H.-L., Dorothy, M., Remagnino, P.: Learning video manifold for segmenting crowd events and abnormality detection. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 439–449. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  12. Thida, M., Eng, H.L., Monekosso, D.N., Remagnino, P.: Learning video manifolds for content analysis of crowded scenes. IPSJ Transactions on Computer Vision and Applications 4, 71–77 (2012)

    Article  Google Scholar 

  13. Liu, C., Freeman, W.T., Adelson, E.H., Weiss, Y.: Human-assisted motion annotation. In: Proc. CVPR 2008, pp. 1–8 (2008)

    Google Scholar 

  14. Niyogi, X.: Locality preserving projections. Neural Information Processing Systems 16, 153 (2004)

    Google Scholar 

  15. Golub, G.H., van Loan, C.F.: Matrix computations (1996)

    Google Scholar 

  16. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Computation 13(7), 1443–1471 (2001)

    Article  MATH  Google Scholar 

  17. Garate, C., Bilinsky, P., Bremond, F.: Crowd event recognition using hog tracker. In: Proc. PETS-Winter 2009, pp. 1–6 (2009)

    Google Scholar 

  18. Chan, A.B., Morrow, M., Vasconcelos, N.: Analysis of crowded scenes using holistic properties. In: Proc. PETS-Winter 2009, pp. 101–108 (2009)

    Google Scholar 

  19. Shi, Y., Gao, Y., Wang, R.: Real-time abnormal event detection in complicated scenes. In: Proc. ICPR 2010, pp. 3653–3656 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Lin, H., Deng, J.D., Woodford, B.J. (2013). Event Detection Using Quantized Binary Code and Spatial-Temporal Locality Preserving Projections. In: Cranefield, S., Nayak, A. (eds) AI 2013: Advances in Artificial Intelligence. AI 2013. Lecture Notes in Computer Science(), vol 8272. Springer, Cham. https://doi.org/10.1007/978-3-319-03680-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03680-9_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03679-3

  • Online ISBN: 978-3-319-03680-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics