Abstract
Recently, compressive sensing has been widely used in the field of object tracking. As a typical representative, Compressive Tracking (CT) outperforms the state-of-the-art approaches. But it has a drawback that the scale of object is invariable throughout the whole tracking process. For solving this problem and further improve its performance, in this paper we propose a Weakly Supervised Compressive Tracking (WSCT) approach. Firstly, we introduce an effective prediction model based on optical flow, which could achieve reliable estimation of the position and the scale of current object. Secondly, through the prediction model, the samples around the predicted position of the current frame could be further utilized as weakly supervised information to guide the compressive classifier’s updating. In this way, this updating strategy combines the current information and future information to alleviate the phenomenon of object drift. Finally, the updated classifiers are used to locate the final object position. Our WSCT algorithm shows robustness for larger scale changes, especially in film and television videos. Experiments and comparisons on challenging tracking sequences have shown the effectiveness of our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Donoho, D.: Compressed sensing. IEEE Trans. Inform. Theory 52, 1289–1306 (2006)
Candes, E., Tao, T.: Near optimal signal recovery from random projections and universal encoding strategies. IEEE Trans. Inform. Theory 52, 5406–5425 (2006)
Zhang, K., Zhang, L., Yang, M.-H.: Real-Time Compressive Tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)
Yilmaz, A., Javed, O., Shah, M.: Object Tracking A Survey. ACM Computing Surveys 38(4) (2006)
Black, M., Jepson, A.: Eigentracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation. IJCV 26(1), 63–84 (1998)
Adam, A., Rivlin, E., Shimshoni, I.: Robust Fragments-Based Tracking Using the Integral Histogram. In: CVPR, pp. 198–805 (2006)
Jepson, A.D., Fleet, D.J., El-Maraghi, T.F.: Robust Online Appearance Models for Visual Tracking. IEEE T-PAMI 25(10), 1296–1311 (2003)
Ross, D., Lim, J., Lin, R., Yang, M.H.: Incremental learning for robust visual tracking. IJCV 77, 125–141 (2008)
Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE T-PAMI 33(8), 1619–1632 (2011)
Avidan, S.: Support vector tracking. IEEE T-PAMI 26, 1064–1072 (2004)
Lepetit, V., Lagger, P., Fua, P.: Randomized trees for real-time keypoint recognition. In: CVPR (2007)
Grabner, H., Bischof, H.: On-line boosting and vision. In: CVPR, vol. 1, pp. 260–267 (2006)
Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)
Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse representation. PAMI 33, 2259–2272 (2011)
Li, H., Shen, C., Shi, Q.: Real-time visual tracking using compressive sensing. In: CVPR, pp. 1305–1312 (2011)
Tian, S., Yin, X.C., Xu, X., Hao, H.W.: Transfer Learning Based Compressvie Tracking. In: IJCNN (2013)
Candes, E., Tao, T.: Decoding by linear programing. IEEE Trans. Inform. Theory 51, 4203–4215 (2005)
Bouguet, J.Y.: Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm. Intel Corporation (2001)
Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010)
Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. PAMI 31, 210–227 (2009)
Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66, 671–687 (2003)
Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28, 253-263 (2008)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR, pp. 511–518 (2001)
Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-Learning-Detection. IEEE T-PAMI 34(7), 1409–1422 (2012)
Birchfield, S.: Elliptical head tracking using intensity gradients and color histograms. In: CVPR, pp. 232–237 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Liang, Y., Yin, XC., Tian, S., Hao, HW. (2013). Weakly Supervised Compressive Tracking with Effective Prediction Model. In: Huet, B., Ngo, CW., Tang, J., Zhou, ZH., Hauptmann, A.G., Yan, S. (eds) Advances in Multimedia Information Processing – PCM 2013. PCM 2013. Lecture Notes in Computer Science, vol 8294. Springer, Cham. https://doi.org/10.1007/978-3-319-03731-8_74
Download citation
DOI: https://doi.org/10.1007/978-3-319-03731-8_74
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-03730-1
Online ISBN: 978-3-319-03731-8
eBook Packages: Computer ScienceComputer Science (R0)