Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Grammatical Bee Colony

  • Conference paper
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8297))

Included in the following conference series:

  • 2187 Accesses

Abstract

This paper presents Grammatical Bee Colony algorithm. Grammatical Bee Colony is variant of Grammatical Evolution algorithm in which Artificial Bee Colony is used as search engine to write a program in any arbitrary language. The performance of Grammatical Bee Colony is tested on benchmark problems. Experimental results shows that Grammatical Bee Colony is able to generate programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ryan, C., Collins, J.J., O’Neill, M.: Grammatical Evolution: Evolving Programs for an Arbitrary Language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–95. Springer, Heidelberg (1998)

    Google Scholar 

  2. O’Neill, M., Ryan, C.: Grammatical Evolution. IEEE Trans. Evolutionary Computation 5(4), 349–358 (2001)

    Article  Google Scholar 

  3. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press (1992)

    Google Scholar 

  4. Nohejl, A.: Grammar-based genetic programming. Master thesis, Charles University, Prague (2011)

    Google Scholar 

  5. O’Neill, M., Brabazon, A.: Grammatical Swarm: The Generation of Programs by Social Programming. Natural Computing 5(4), 443–462 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: IEEE International Conference on Neural Networks, Perth, Australia (1995)

    Google Scholar 

  7. O’Neill, M., Brabazo, A.: Grammatical Differential Evolution. In: International Conference on Artificial Intelligence (ICAI 2006), pp. 231–236. CSEA Press, Las Vegas (2006)

    Google Scholar 

  8. Karaboga, D.: An Idea Based On Honey Bee Swarm For Numerical Optimization. Technical Report-TR06, Erciyes University, Engineeing Faculty, Computer Engineering Department (2005)

    Google Scholar 

  9. Karaboga, D., Ozturk, C., Karaboga, N., Gorkemli, B.: Artificial Bee Colony Programming for Symbolic Regression. Information Sciences 209, 1–15 (2012)

    Article  Google Scholar 

  10. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming (2008), Published via http://lulu.com , and freely available at http://lulu.com , ( With contributions by J.R Koza). GP BIB

  11. Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: IEEE World Congr. Comput. Intell., pp. 69–73 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Si, T., De, A., Bhattacharjee, A.K. (2013). Grammatical Bee Colony. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Dash, S.S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2013. Lecture Notes in Computer Science, vol 8297. Springer, Cham. https://doi.org/10.1007/978-3-319-03753-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03753-0_39

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03752-3

  • Online ISBN: 978-3-319-03753-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics