Abstract
A function f: V → { − 1,0,1} is a minus-domination function of a graph G = (V,E) if the values over the vertices in each closed neighborhood sum to a positive number. The weight of f is the sum of f(x) over all vertices x ∈ V. In the minus-domination problem, one tries to minimize the weight of a minus-domination function. In this paper, we show that (1) the minus-domination problem is fixed-parameter tractable for d-degenerate graphs when parameterized by the size of the minus-dominating set and by d, where the size of a minus domination is the number of vertices that are assigned 1, (2) the minus-domination problem is polynomial for graphs of bounded rankwidth and for strongly chordal graphs, (3) it is NP-complete for splitgraphs, and (4) unless P = NP there is no fixed-parameter algorithm for minus-domination.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alber, J., Bodlaender, H., Fernau, H., Kloks, T., Niedermeier, R.: Fixed-parameter algorithms for dominating set and related problems on planar graphs. Algorithmica 33, 461–493 (2002)
Alon, N., Gutner, S.: Linear time algorithms for finding a dominating set of fixed size in degenerated graphs. Algorithmica 54, 544–556 (2009)
Damaschke, P.: Minus domination in small-degree graphs. Discrete Applied Mathematics 108, 53–64 (2001)
Demaine, E., Formin, F., Hajiaghayi, M., Thilikos, D.: Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Transactions on Algorithms 1, 33–47 (2005)
Dunbar, J., Goddard, W., Hedetniemi, S., Henning, M., McRae, A.: The algorithmic complexity of minus domination in graphs. Discrete Applied Mathematics 68, 73–84 (1996)
Farber, M.: Domination, independent domination, and duality in strongly chordal graphs. Discrete Applied Mathematics 7, 115–130 (1984)
Fomin, F., Lokshtanov, D., Saurabh, S., Thilikos, D.: Linear kernels for (connected) dominating set on graphs with excluded topological subgraphs. In: Proceedings STACS 2013, Schloss Dagstuhl-Leibniz-Zentrum für Informatik. LPIcs, vol. 20, pp. 92–103 (2013)
Frank, A.: Some polynomial algorithms for certain graphs and hypergraphs. In: Nash-Williams, C., Sheehan, J. (eds.) Proceedings 5th British Combinatorial Conference 1975. Congressus Numeratium XV, pp. 211–226 (1975)
Fulkerson, D., Hoffman, A., Oppenheim, R.: On balanced matrices. Mathematical Programming Study 1, 120–132 (1974)
Hattingh, J., Henning, M., Slater, P.: The algorithmic complexity of signed domination in graphs. Australasian Journal of Combinatorics 12, 101–112 (1995)
Hoffman, A., Kolen, A., Sakarovitch, M.: Totally-balanced and greedy matrices. SIAM Journal on Algebraic and Discrete Methods 6, 721–730 (1985)
Howorka, E.: A characterization of distance-hereditary graphs. The Quarterly Journal of Mathematics 28, 417–420 (1977)
Kloks, T.: Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994)
Kloks, T., Liu, C., Poon, S.: Feedback vertex set on chordal bipartite graphs. Manuscript on arXiv: 1104.3915 (2012)
Kloks, T., Wang, Y.: Advances in graph algorithms (2013) (manuscript)
Kolen, A.: Location problems on trees and in the rectilinear plane, PhD Thesis, Mathematisch centrum, Amsterdam (1982)
Langer, A., Rossmanith, P., Sikdar, S.: Linear-time algorithms for graphs of bounded rankwidth: A fresh look using game theory. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 505–516. Springer, Heidelberg (2011)
Lee, C., Chang, M.: Variations of Y-dominating functions on graphs. Discrete Mathematics 308, 4185–4204 (2008)
Liang, H.: Signed and minus domination in complete multipartite graphs. Manuscript on arXiv: 1205.0343 (2012)
Lubiw, A.: Γ-Free matrices, Master’s Thesis, University of Waterloo, Canada (1982)
Matoušek, J.: Lower bound on the minus-domination number. Discrete Mathematics 233, 361–370 (2001)
Mellor, A., Prieto, E., Mathieson, L., Moscato, P.: A kernelisation approach for multiple d-hitting set and its application in optimal multi-drug therapeutic combinations. PLoS One 5, e13055 (2010)
Scheinerman, E., Ullman, D.: Fractional graph theory. Wiley (1997)
Thomason, A.: The extremal function for complete minors. Journal of Combinatorial Theory, Series B 81, 318–338 (2001)
Yeh, H., Chang, G.: Algorithmic aspects of majority domination. Taiwanese Journal of Mathematics 1, 343–350 (1997)
Zheng, Y., Wang, J., Feng, Q.: Kernelization and lowerbounds of the signed domination problem. In: Fellows, M., Tan, X., Zhu, B. (eds.) FAW-AAIM 2013. LNCS, vol. 7924, pp. 261–271. Springer, Heidelberg (2013)
Zheng, Y., Wang, J., Feng, Q., Chen, J.: FPT results for signed domination. In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp. 572–583. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Faria, L., Hon, WK., Kloks, T., Liu, HH., Wang, TM., Wang, YL. (2013). On Complexities of Minus Domination. In: Widmayer, P., Xu, Y., Zhu, B. (eds) Combinatorial Optimization and Applications. COCOA 2013. Lecture Notes in Computer Science, vol 8287. Springer, Cham. https://doi.org/10.1007/978-3-319-03780-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-03780-6_16
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-03779-0
Online ISBN: 978-3-319-03780-6
eBook Packages: Computer ScienceComputer Science (R0)