Abstract
We present output sensitive techniques for the generalized reporting versions of the planar range maxima problem and the planar range convex hull problem. Our solutions are in the pointer machine model, for orthogonal range queries on a static point set. We solve the planar range maxima problem for two-sided, three-sided and four-sided queries. We achieve a query time of O(logn + c) using O(n) space for the two-sided case, where n denotes the number of stored points and c the number of colors reported. For the three-sided case, we achieve query time O(log2 n + clogn) using O(n) space while for four-sided queries we answer queries in O(log3 n + clog2 n) using O(nlogn) space. For the planar range convex hull problem, we provide a solution that answers queries in O(log2 n + clogn) time, using O(nlog2 n) space.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, P.K., Govindarajan, S., Muthukrishnan, S.M.: Range searching in categorical data: Colored range searching on grid. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 17–28. Springer, Heidelberg (2002)
Alstrup, S., Brodal, G.S., Rauhe, T.: New data structures for orthogonal range searching. In: FOCS, pp. 198–207. IEEE Computer Society (2000)
Bozanis, P., Kitsios, N., Makris, C., Tsakalidis, A.K.: New upper bounds for generalized intersection searching problems. In: Fülöp, Z. (ed.) ICALP 1995. LNCS, vol. 944, pp. 464–474. Springer, Heidelberg (1995)
Brass, P., Knauer, C., Shin, C.S., Smid, M., Vigan, I.: Range-aggregate queries for geometric extent problems. In: CATS: 19th Computing: Australasian Theory Symposium (2013)
Brodal, G.S., Tsakalidis, K.: Dynamic planar range maxima queries. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 256–267. Springer, Heidelberg (2011)
Chazelle, B.: A functional approach to data structures and its use in multidimensional searching. SIAM J. Comput. 17(3), 427–462 (1988)
Gagie, T., Kärkkäinen, J., Navarro, G., Puglisi, S.J.: Colored range queries and document retrieval. Theor. Comput. Sci. 483, 36–50 (2013)
Gupta, P., Janardan, R., Smid, M.: Computational geometry: Generalized intersection searching. In: Mehta, D., Sahni, S. (eds.) Handbook of Data Structures and Applications, Chapman & Hall/CRC, Boca Raton, FL, pp. 1–17. CRC Press (2005)
Gupta, P., Janardan, R., Smid, M.H.M.: Efficient algorithms for generalized intersection searching on non-iso-oriented objects. In: Symposium on Computational Geometry, pp. 369–378 (1994)
Gupta, P., Janardan, R., Smid, M.H.M.: Algorithms for generalized halfspace range searching and other intersection searching problems. Comput. Geom. 5, 321–340 (1995)
Gupta, P., Janardan, R., Smid, M.H.M.: Further results on generalized intersection searching problems: Counting, reporting, and dynamization. J. Algorithms 19(2), 282–317 (1995)
Gupta, P., Janardan, R., Smid, M.H.M.: Algorithms for generalized halfspace range searching and other intersection searching problems. Comput. Geom. 6, 1–19 (1996)
Gupta, P., Janardan, R., Smid, M.H.M.: A technique for adding range restrictions to generalized searching problems. Inf. Process. Lett. 64(5), 263–269 (1997)
Janardan, R., Lopez, M.A.: Generalized intersection searching problems. Int. J. Comput. Geometry Appl. 3(1), 39–69 (1993)
Kalavagattu, A.K., Agarwal, J., Das, A.S., Kothapalli, K.: On counting range maxima points in plane. In: Smyth, B. (ed.) IWOCA 2012. LNCS, vol. 7643, pp. 263–273. Springer, Heidelberg (2012)
Kirkpatrick, D., Snoeyink, J.: Computing common tangents without a separating line. In: Sack, J.-R., Akl, S.G., Dehne, F., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955, pp. 183–193. Springer, Heidelberg (1995)
McCreight, E.M.: Priority search trees. SIAM J. Comput. 14(2), 257–276 (1985)
Moidu, N., Agarwal, J., Kothapalli, K.: Planar convex hull range query and related problems. In: CCCG, Carleton University, Ottawa, Canada (2013)
O’Rourke, J.: Computational Geometry in C. Cambridge University Press (1998), http://cs.smith.edu/~orourke/books/compgeom.html
Rahul, S., Bellam, H., Gupta, P., Rajan, K.: Range aggregate structures for colored geometric objects. In: CCCG. pp. 249–252 (2010)
Rahul, S., Janardan, R.: Algorithms for range-skyline queries. In: Cruz, I.F., Knoblock, C.A., Kröger, P., Tanin, E., Widmayer, P. (eds.) SIGSPATIAL/GIS, pp. 526–529. ACM (2012)
Shi, Q., JáJá, J.: Optimal and near-optimal algorithms for generalized intersection reporting on pointer machines. Inf. Process. Lett. 95(3), 382–388 (2005)
Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. In: STOC, pp. 114–122. ACM (1981)
Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst. Sci. 26(3), 362–391 (1983)
Tarjan, R.E.: Applications of path compression on balanced trees. J. ACM 26(4), 690–715 (1979)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Moidu, N., Agarwal, J., Khare, S., Kothapalli, K., Srinathan, K. (2014). On Generalized Planar Skyline and Convex Hull Range Queries. In: Pal, S.P., Sadakane, K. (eds) Algorithms and Computation. WALCOM 2014. Lecture Notes in Computer Science, vol 8344. Springer, Cham. https://doi.org/10.1007/978-3-319-04657-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-04657-0_6
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-04656-3
Online ISBN: 978-3-319-04657-0
eBook Packages: Computer ScienceComputer Science (R0)