Abstract
Discrete figures (or polyominoes) are fundamental objects in combinatorics and discrete geometry, having been studied in many contexts, ranging from game theory to tiling problems. In 2008, Provençal introduced the concept of prime and composed polyominoes, which arises naturally from a composition operator acting on these discrete figures. Our goal is to study further polyomino composition and, in particular, factorization of polyominoes as a product of prime ones. We provide a polynomial time (with respect to the perimeter of the polyomino) algorithm that allows one to compute such a factorization. As a consequence, primality of polyominoes can be decided in polynomial time.
This research is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beauquier, D., Nivat, M.: On translating one polyomino to tile the plane. Discrete Comput. Geom. 6, 575–592 (1991)
Brlek, S., Provençal, X.: On the problem of deciding if a polyomino tiles the plane by translation. In: Holub, J., Žďárek, J. (eds.) Proceedings of the Prague Stringology Conference 2006, Czech Technical University in Prague, Prague, Czech Republic, August 28-30, pp. 65–76 (2006) ISBN80-01-03533-6
Brlek, S., Frosini, A., Rinaldi, S., Vuillon, L.: Tilings by translation: enumeration by a rational language approach. Electronic Journal of Combinatorics 13, 15 (2006)
Gambini, I., Vuillon, L.: An algorithm for deciding if a polyomino tiles the plane by translations. Theoret. Informatics Appl. 41, 147–155 (2007)
Golomb, S.W.: Tiling with sets of polyominoes. Journal of Combinatorial Theory 9(1), 60–71 (1970), http://www.sciencedirect.com/science/article/pii/S0021980070800552
Golomb, S.W.: Polyominoes: Puzzles, Patterns, Problems, and Packings. Princeton Academic Press, Princeton (1996)
Knuth, D.E.: Dancing links (2000), http://arxiv.org/abs/cs/0011047
Labbé, S.: Tiling solver in Sage (2011), http://www.sagemath.org/doc/reference/combinat/sage/combinat/tiling.html
Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge (1997)
Blondin-Massé, A., Brlek, S., Garon, A., Labbé, S.: Christoffel and Fibonacci tiles. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 67–78. Springer, Heidelberg (2009)
Blondin Massé, A., Garon, A., Labbé, S.: Combinatorial properties of double square tiles. Theoretical Computer Science (2012), http://www.sciencedirect.com/science/article/pii/S0304397512009723 , http://www.sciencedirect.com/science/article/pii/S0304397512009723
Massé, A.B., Frosini, A., Rinaldi, S., Vuillon, L.: On the shape of permutomino tiles. Discrete Applied Mathematics 161(15), 2316–2327 (2013), http://www.sciencedirect.com/science/article/pii/S0166218X12003344 ; advances in Discrete Geometry: 16th International Conference on Discrete Geometry for Computer Imagery
Moore, C., Michael, J.: Hard tiling problems with simple tiles (2000), http://arxiv.org/abs/math/0003039
Polyá, G.: On the number of certain lattice polygons. Journal of Combinatorial Theory 6(1), 102–105 (1969), http://www.sciencedirect.com/science/article/pii/S0021980069801134
Provençal, X.: Combinatoire des mots, géométrie discrète et pavages. Ph.D. thesis, D1715, Université du Québec à Montréal (2008)
Wijshoff, H., van Leeuven, J.: Arbitrary versus periodic storage schemes and tesselations of the plane using one type of polyomino. Inform. Control 62, 1–25 (1984)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Blondin Massé, A., Tall, A.M., Tremblay, H. (2014). On the Arithmetics of Discrete Figures. In: Dediu, AH., Martín-Vide, C., Sierra-Rodríguez, JL., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2014. Lecture Notes in Computer Science, vol 8370. Springer, Cham. https://doi.org/10.1007/978-3-319-04921-2_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-04921-2_16
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-04920-5
Online ISBN: 978-3-319-04921-2
eBook Packages: Computer ScienceComputer Science (R0)