Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Arithmetics of Discrete Figures

  • Conference paper
Language and Automata Theory and Applications (LATA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8370))

Abstract

Discrete figures (or polyominoes) are fundamental objects in combinatorics and discrete geometry, having been studied in many contexts, ranging from game theory to tiling problems. In 2008, Provençal introduced the concept of prime and composed polyominoes, which arises naturally from a composition operator acting on these discrete figures. Our goal is to study further polyomino composition and, in particular, factorization of polyominoes as a product of prime ones. We provide a polynomial time (with respect to the perimeter of the polyomino) algorithm that allows one to compute such a factorization. As a consequence, primality of polyominoes can be decided in polynomial time.

This research is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beauquier, D., Nivat, M.: On translating one polyomino to tile the plane. Discrete Comput. Geom. 6, 575–592 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brlek, S., Provençal, X.: On the problem of deciding if a polyomino tiles the plane by translation. In: Holub, J., Žďárek, J. (eds.) Proceedings of the Prague Stringology Conference 2006, Czech Technical University in Prague, Prague, Czech Republic, August 28-30, pp. 65–76 (2006) ISBN80-01-03533-6

    Google Scholar 

  3. Brlek, S., Frosini, A., Rinaldi, S., Vuillon, L.: Tilings by translation: enumeration by a rational language approach. Electronic Journal of Combinatorics 13, 15 (2006)

    MathSciNet  Google Scholar 

  4. Gambini, I., Vuillon, L.: An algorithm for deciding if a polyomino tiles the plane by translations. Theoret. Informatics Appl. 41, 147–155 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Golomb, S.W.: Tiling with sets of polyominoes. Journal of Combinatorial Theory 9(1), 60–71 (1970), http://www.sciencedirect.com/science/article/pii/S0021980070800552

    Article  MATH  MathSciNet  Google Scholar 

  6. Golomb, S.W.: Polyominoes: Puzzles, Patterns, Problems, and Packings. Princeton Academic Press, Princeton (1996)

    Google Scholar 

  7. Knuth, D.E.: Dancing links (2000), http://arxiv.org/abs/cs/0011047

  8. Labbé, S.: Tiling solver in Sage (2011), http://www.sagemath.org/doc/reference/combinat/sage/combinat/tiling.html

  9. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  10. Blondin-Massé, A., Brlek, S., Garon, A., Labbé, S.: Christoffel and Fibonacci tiles. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 67–78. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Blondin Massé, A., Garon, A., Labbé, S.: Combinatorial properties of double square tiles. Theoretical Computer Science (2012), http://www.sciencedirect.com/science/article/pii/S0304397512009723 , http://www.sciencedirect.com/science/article/pii/S0304397512009723

  12. Massé, A.B., Frosini, A., Rinaldi, S., Vuillon, L.: On the shape of permutomino tiles. Discrete Applied Mathematics 161(15), 2316–2327 (2013), http://www.sciencedirect.com/science/article/pii/S0166218X12003344 ; advances in Discrete Geometry: 16th International Conference on Discrete Geometry for Computer Imagery

    Google Scholar 

  13. Moore, C., Michael, J.: Hard tiling problems with simple tiles (2000), http://arxiv.org/abs/math/0003039

  14. Polyá, G.: On the number of certain lattice polygons. Journal of Combinatorial Theory 6(1), 102–105 (1969), http://www.sciencedirect.com/science/article/pii/S0021980069801134

    Article  MATH  Google Scholar 

  15. Provençal, X.: Combinatoire des mots, géométrie discrète et pavages. Ph.D. thesis, D1715, Université du Québec à Montréal (2008)

    Google Scholar 

  16. Wijshoff, H., van Leeuven, J.: Arbitrary versus periodic storage schemes and tesselations of the plane using one type of polyomino. Inform. Control 62, 1–25 (1984)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Blondin Massé, A., Tall, A.M., Tremblay, H. (2014). On the Arithmetics of Discrete Figures. In: Dediu, AH., Martín-Vide, C., Sierra-Rodríguez, JL., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2014. Lecture Notes in Computer Science, vol 8370. Springer, Cham. https://doi.org/10.1007/978-3-319-04921-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04921-2_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04920-5

  • Online ISBN: 978-3-319-04921-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics