Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Big Data Metadata Management in Smart Grids

  • Chapter
  • First Online:
Big Data and Internet of Things: A Roadmap for Smart Environments

Part of the book series: Studies in Computational Intelligence ((SCI,volume 546))

Abstract

Smart home, smart grids, smart museum, smart cities, etc. are making the vision for living in smart environments come true. These smart environments are built based upon the Internet of Things paradigm where many devices and applications are involved. In these environments, data are collected from various sources in diverse formats. The data are then processed by different intelligent systems with the purpose of providing efficient system planning, power delivery, and customer operations. Even though there are known technologies for most of these smart environments, putting them together to make intelligent and context-aware systems is not an easy task. The reason is that there are semantic inconsistencies between applications and systems. These inconsistencies can be solved by using metadata. This chapter presents management of big data metadata in smart grids. Three important issues in managing and solutions to overcome them are discussed. As a part of future grids, some concrete examples from the offshore wind energy are used to demonstrate the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.w3.org/2005/Incubator/ssn/ssnx/ssn

References

  1. Ackoff, R.L.: From data to wisdom. J. Appl. Syst. Anal. 16, 3–9 (2010)

    Google Scholar 

  2. Antoniou, G., Harmelen, F.v.: Web ontology language: OWL. Handbook on Ontologies. International Handbooks on Information Systems, pp. 91–110. Springer, Berlin Heidelberg (2009)

    Google Scholar 

  3. Baclawski, K., Kokar, M., Waldinger, R., Kogut, P.: Consistency checking of semantic web ontologies. The Semantic Web ISWC 2002, pp. 454–459 (2002)

    Google Scholar 

  4. Balsters, H.: Modelling database views with derived classes in the UML/OCL-framework. In: UML 2003-The Unified Modeling Language. Modeling Languages and Applications, pp. 295–309. Springer (2003)

    Google Scholar 

  5. Barnaghi, P., Wang, W., Henson, C., Taylor, K.: Semantics for the internet of things: early progress and back to the future. Int. J. Semant. Web Inf. Syst. (IJSWIS) 8(1), 1–21 (2012)

    Article  Google Scholar 

  6. Baumgartner, N., Gottesheim, W., Mitsch, S., Retschitzegger, W., Schwinger, W.: Improving situation awareness in traffic management. In: Proceedings of the International Conference on Very Large Data Bases (2010)

    Google Scholar 

  7. Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D., Patel-Schneider, P., Stein, L., et al.: OWL web ontology language reference. W3C Recommendation 10, 10 (2004)

    Google Scholar 

  8. Berners-Lee, T., Fischetti, M.: Weaving the Web: The Original Design and Ultimate Destiny of the World Wide Web by Its Inventor. HarperInformation, 256 p. (2000)

    Google Scholar 

  9. Bredillet, P., Lambert, E., Schultz, E.: CIM, 61850, COSEM standards used in a model driven integration approach to build the smart grid service oriented architecture. In: First IEEE International Conference on Smart Grid Communications (SmartGridComm), 2010, pp. 467–471 (2010)

    Google Scholar 

  10. Bröring, A., Maué, P., Janowicz, K., Nüst, D., Malewski, C.: Semantically-enabled sensor plug & play for the sensor web. Sensors 11(8), 7568–7605 (2011)

    Article  Google Scholar 

  11. Camacho, E.F., Samad, T., Garcia-Sanz, M., Hiskens, I.: Control for renewable energy and smart grids. The Impact of Control Technology, Control Systems Society, pp. 69–88 (2011)

    Google Scholar 

  12. Chen, J., Chen, Y., Du, X., Li, C., Lu, J., Zhao, S., Zhou, X.: Big data challenge: a data management perspective. Front. Comput. Sci. 7(2), 157–164 (2013)

    Article  MathSciNet  Google Scholar 

  13. Compton, M., Barnaghi, P., Bermudez, L., García-Castro, R., Corcho, O., Cox, S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., et al.: The SSN ontology of the W3C semantic sensor network incubator group. Web Semant.: Sci. Serv. Agents World Wide Web 17, 25–32 (2012)

    Article  Google Scholar 

  14. Datastax Corporation: Big Data: Beyond the Hype. White paper (2013)

    Google Scholar 

  15. ETP: Smart Grids—Strategic Deployment Document for Europe’s Electricity Networks of the Future (2010)

    Google Scholar 

  16. Geisler, S., Weber, S., Quix, C.: Onotology-based data quality framewrok for data stream applications. In: 16th International Conference on Information Quality, Nov 2011, Adelaide, AUS (2011)

    Google Scholar 

  17. Ghazel, M., Toguyéni, A., Bigand, M.: An UML approach for the metamodelling of automated production systems for monitoring purpose. Comput. Ind. 55(3), 283–299 (2004)

    Article  Google Scholar 

  18. Gruber, T.R., et al.: Toward principles for the design of ontologies used for knowledge sharing. Int. J. Hum. Comput. Stud. 43(5), 907–928 (1995)

    Article  Google Scholar 

  19. Hachem, N.I., Qiu, K., Serrao, N., Gennert, M.A.: GaeaPN: A Petri Net model for the management of data and metadata derivations in scientific experiments. Worcester Polytechnic Institute, Computer Science Department, Technical Report WPI-CS-TR-94 1 (1994)

    Google Scholar 

  20. Horrocks, I., Patel-Schneider, P., Van Harmelen, F.: From SHIQ and RDF to OWL: the making of a web ontology language. Web semant.: Sci. Serv. Agents World Wide Web 1(1), 7–26 (2003)

    Article  Google Scholar 

  21. Huang, K.T., Lee, Y.W., Wang, R.Y.: Quality Information and Knowledge. Prentice Hall PTR (1998)

    Google Scholar 

  22. Iannone, L., Rector, A.L.: Calculations in OWL. In: OWLED (2008)

    Google Scholar 

  23. IEC: IEC 61400 Wind Turbines—part 25: Communications for Monitoring and Control of Wind Power Plants (2006)

    Google Scholar 

  24. IEEE: Guide for Smart Grid Interoperability of Energy Technology and Information Technology Operation with the Electric Power System (EPS), End-Use Applications, and Loads. IEEE Std 2030-2011 pp. 1–126 (2011)

    Google Scholar 

  25. Informatica Corporation: Metadata Management for Holistic Data Governance. White paper (2013)

    Google Scholar 

  26. ISO: ISO 5725–2: 1994: Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 2: Methods for the Determination of Repeatability and Reproductibility. International Organization for Standardization (1994)

    Google Scholar 

  27. Kollia, I., Glimm, B., Horrocks, I.: SPARQL query answering over OWL ontologies. In: The Semantic Web: Research and Applications, pp. 382–396. Springer (2011)

    Google Scholar 

  28. Le-Phuoc, D., Nguyen-Mau, H.Q., Parreira, J.X., Hauswirth, M.: A middleware framework for scalable management of linked streams. Web Semant.: Sci. Serv. Agents World Wide Web 16, 42–51 (2012)

    Article  Google Scholar 

  29. Lee, Y.W., Strong, D.M., Kahn, B.K., Wang, R.Y.: AIMQ: a methodology for information quality assessment. Inf. Manage. 40(2), 133–146 (2002)

    Article  Google Scholar 

  30. Lenzerini, M., Milano, D., Poggi, A.: Ontology representation and reasoning. Universit di Roma La Sapienza, Roma, Italy, Technical report NoE InterOp (IST-508011) (2004)

    Google Scholar 

  31. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big data: the next frontier for innovation, competition, and productivity. Technical report, McKinsey Global Institute (2011)

    Google Scholar 

  32. Margaritopoulos, T., Margaritopoulos, M., Mavridis, I., Manitsaris, A.: A conceptual framework for metadata quality assessment. Universitätsverlag Göttingen 104 (2008)

    Google Scholar 

  33. Muljadi, E., Pierce, K., Migliore, P.: Control strategy for variable-speed, stall-regulated wind turbines. In: Proceedings of the 1998 American Control Conference, vol. 3, pp. 1710–1714. IEEE (1998)

    Google Scholar 

  34. Muyeen, S., Tamura, J., Murata, T.: Wind turbine modeling. Stability Augmentation of a Grid-Connected Wind Farm, pp. 23–65 (2009)

    Google Scholar 

  35. Neuhaus, H., Compton, M.: The semantic sensor network ontology. AGILE workshop on challenges in geospatial data harmonisation, Hannover, Germany, pp. 1–33 (2009)

    Google Scholar 

  36. Nguyen, T.H., Prinz, A., Friiso, T., Nossum, R.: Smart grid for offshore wind farms: towards an information model based on the iec 61400-25 standard. In: IEEE PES Innovative Smart Grid Technologies (ISGT), 2012, pp. 1–6 (2012). doi:10.1109/ISGT.2012.6175686

    Google Scholar 

  37. Nguyen, T.H., Prinz, A., Friisø, T., Nossum, R., Tyapin, I.: A framework for data integration of offshore wind farms. Renew. Energy 60, 150–161 (2013)

    Article  Google Scholar 

  38. NIST: NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0. NIST Special Publication 1108R2 edn. (2012)

    Google Scholar 

  39. O’Connor, M., Das, A.: SQWRL: a query language for OWL. In: Proceedings of 6th OWL: Experiences and Directions, Workshop (OWLED2009) (2009)

    Google Scholar 

  40. Park, J.R.: Metadata quality in digital repositories: a survey of the current state of the art. Cataloging Classif. Q. 47(3–4), 213–228 (2009)

    Article  Google Scholar 

  41. Patel-Schneider, P.F., et al., Hayes, P., Horrocks, I., et al.: OWL web ontology language semantics and abstract syntax. W3C Recommendation 10 (2004)

    Google Scholar 

  42. Ragheb, M., Ragheb, A.M.: Wind turbines theory-the betz equation and optimal rotor tip speed ratio. In: Carriveau, R. (ed.) Fundamental and Advanced Topics in Wind Power, pp. 19–37 (2011)

    Google Scholar 

  43. Ramirez, R.G., Kulkarni, U.R., Moser, K.A.: Derived data for decision support systems. Decis. Support Syst. 17(2), 119–140 (1996)

    Article  Google Scholar 

  44. Rasta, K., Nguyen, T.H., Prinz, A.: A framework for data quality handling in enterprise service bus. In: Third International Conference on Innovative Computing Technology (INTECH), 2013, pp. 491–497 (2013)

    Google Scholar 

  45. Rossouw, L., Re, G.: Big data-big opportunities. RISK 16(2) (2012)

    Google Scholar 

  46. Sheth, A., Anantharam, P., Henson, C.: Physical-cyber-social computing: an early 21st century approach. IEEE Intell Syst 28(1), 78–82 (2013). doi:10.1109/MIS.2013.20

    Article  Google Scholar 

  47. Singh, A.: Standards for smart grid. Int. J. Eng. Res. Appl. (IJERA) (2012)

    Google Scholar 

  48. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL query for OWL-DL. In: OWLED, vol. 258 (2007)

    Google Scholar 

  49. Sirin, E., Parsia, B., Grau, B., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. Web Semant.: Sci. Serv. Agents World Wide Web 5(2), 51–53 (2007)

    Article  Google Scholar 

  50. Snyder, B., Kaiser, M.J.: Ecological and economic cost-benefit analysis of offshore wind energy. Renew. Energy 34(6), 1567–1578 (2009)

    Article  Google Scholar 

  51. Solntseff, N., Yezerski, A.: A survey of extensible programming languages. Ann. Rev. Autom. Prog. 7, 267–307 (1974)

    MathSciNet  Google Scholar 

  52. Strong, D.M., Lee, Y.W., Wang, R.Y.: Data duality in context. Commun. ACM 40(5), 103–110 (1997)

    Article  Google Scholar 

  53. Studer, R., Benjamins, V., Fensel, D.: Knowledge engineering: principles and methods. Data Knowl. Eng. 25(1–2), 161–197 (1998)

    Article  MATH  Google Scholar 

  54. Tambouris, E., Manouselis, N., Costopoulou, C.: Metadata for digital collections of e-government resources. Electron. Libr. 25(2), 176–192 (2007)

    Article  Google Scholar 

  55. Tannenbaum, A.: Metadata Solutions: Using Metamodels, Repositories, XML, and Enterprise Portals to Generate Information on Demand. Addison-Wesley Longman Publishing Co., Inc., Boston (2001)

    Google Scholar 

  56. Vermesan, O., Friess, P., Guillemin, P., Gusmeroli, S., Sundmaeker, H., Bassi, A., Jubert, I.S., Mazura, M., Harrison, M., Eisenhauer, M., et al.: Internet of things strategic research roadmap. In: Vermesan, O., Friess, P., Guillemin, P., Gusmeroli, S., Sundmaeker, H., Bassi, A., et al. (eds.) Internet of Things: Global Technological and Societal Trends, pp. 9–52 (2011)

    Google Scholar 

  57. Wagner, A., Speiser, S., Harth, A.: Semantic web technologies for a smart energy grid: Requirements and challenges. In: ISWC Posters and Demos (2010)

    Google Scholar 

  58. Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. J. Manag. Inf. Syst. 5–33 (1996)

    Google Scholar 

  59. Warmer, J., Kleppe, A.: The object constraint language: getting your models ready for MDA. Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

    Google Scholar 

  60. Xu, H.: Critical success factors for accounting information systems data quality. Ph.D. thesis, University of Southern Queensland (2009)

    Google Scholar 

  61. Zikopoulos, P.C., Eaton, C., DeRoos, D., Deutsch, T., Lapis, G.: Understanding Big Data. The McGraw-Hill Companies (2012)

    Google Scholar 

  62. Zubcoff, J., Pardillo, J., Trujillo, J.: A UML profile for the conceptual modelling of data-mining with time-series in data warehouses. Inf. Softw. Technol. 51(6), 977–992 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been (partially) funded by the Norwegian Centre for Offshore Wind Energy (NORCOWE) under grant 193821/S60 from the Research Council of Norway (RCN). NORCOWE is a consortium with partners from industry and science, hosted by Christian Michelsen Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trinh Hoang Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nguyen, T.H., Nunavath, V., Prinz, A. (2014). Big Data Metadata Management in Smart Grids. In: Bessis, N., Dobre, C. (eds) Big Data and Internet of Things: A Roadmap for Smart Environments. Studies in Computational Intelligence, vol 546. Springer, Cham. https://doi.org/10.1007/978-3-319-05029-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05029-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05028-7

  • Online ISBN: 978-3-319-05029-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics