Abstract
We are surrounded by both natural and engineered collective systems. Such systems include many entities, which interact locally and, without necessarily having any global knowledge, nevertheless work together to create a system with discernible characteristics at the global level; a phenomenon sometimes termed emergence. Examples include swarms of bees, flocks of birds, spread of disease through a population, traffic jams and robot swarms. Many of these systems are also adaptive in the sense that the constituent entities can respond to their perception of the current state of the system at large, changing their behaviour accordingly.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Ajmone Marsan, M., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems. ACM Trans. Comput. Syst. 2(2), 93–122 (1984)
Bernardo, M., Gorrieri, R.: A tutorial on EMPA: a theory of concurrent processes with nondeterminism, priorities, probabilities and time. Theor. Comput. Sci. 202(1–2), 1–54 (1998)
Bortolussi, L., Hillston, J.: Checking individual agent behaviours in Markov population models by fluid approximation. In: Bernardo, M., de Vink, E., Di Pierro, A., Wiklicky, H. (eds.) SFM 2013. LNCS, vol. 7938, pp. 113–149. Springer, Heidelberg (2013)
Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of collective system behaviour: A tutorial. Perform. Eval. 70(5), 317–349 (2013)
Bortolussi, L., Lanciani, R.: Model checking Markov population models by central limit approximation. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 123–138. Springer, Heidelberg (2013)
Bradley, J.T., Gilmore, S.T., Hillston, J.: Analysing distributed Internet worm attacks using continuous state-space approximation of process algebra models. J. Comput. Syst. Sci. 74(6), 1013–1032 (2008)
De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R.: A language-based approach to autonomic computing. In: Beckert, B., Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 25–48. Springer, Heidelberg (2012)
Guenther, M.C., Bradley, J.T.: Mean-field analysis of data flows in wireless sensor networks. In: ACM/SPEC International Conference on Performance, Engineering, ICPE’13, pp. 51–62 (2013)
Hayden, R.A., Bradley, J.T.: A fluid analysis framework for a Markovian process algebra. Theor. Comput. Sci. 411(22–24), 2260–2297 (2010)
Hayden, R.A., Stefanek, A., Bradley, J.T.: Fluid computation of passage-time distributions in large Markov models. Theor. Comput. Sci. 413(1), 106–141 (2012)
Hermanns, H. (ed.): Interactive Markov Chains: The Quest for Quantified Quality. LNCS, vol. 2428. Springer, Heidelberg (2002)
Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (2005)
Hillston, J.: Fluid flow approximation of PEPA models. In: 2nd International Conference on the Quantitative Evaluaiton of Systems (QEST 2005), pp. 33–43 (2005)
Hillston, J., Kloul, L.: Formal techniques for performance analysis: blending SAN and PEPA. Formal Aspects Comput. 19(1), 3–33 (2007)
Hillston, J., Tribastone, M., Gilmore, S.: Stochastic process algebras: from individuals to populations. Comput. J. 55(7), 866–881 (2012)
Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: probabilistic model checking for performance and reliability analysis. SIGMETRICS Perform. Eval. Rev. 36(4), 40–45 (2009)
Massink, M., Brambilla, M., Latella, D., Dorigo, M., Birattari, M.: On the use of Bio-PEPA for modelling and analysing collective behaviours in swarm robotics. Swarm Intell. 7(2–3), 20–228 (2013)
Massink, M., Latella, D., Bracciali, A., Harrison, M.D., Hillston, J.: Scalable context-dependent analysis of emergency egress models. Formal Aspects Comput. 24(2), 267–302 (2012)
Massink, M., Harrison, M.D., Latella, D.: Scalable analysis of collective behaviour in smart service systems. In: Proceedings of the 2010 ACM Symposium on Applied Computing (SAC), pp. 1173–1180 (2010)
Milner, R.: The Space and Motion of Communicating Agents. Cambridge University Press, Cambridge (2009)
Tribastone, M., Ding, J., Gilmore, S., Hillston, J.: Fluid rewards for a stochastic process algebra. IEEE Trans. Softw. Eng. 38(4), 861–874 (2012)
Tribastone, M., Hillston, J., Gilmore, S.: Scalable differential analysis of process algebra models. IEEE Trans. Softw. Eng. 38(1), 205–219 (2012)
Acknowledgement
This work is partially supported by the EU project QUANTICOL, 600708.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Hillston, J. (2014). Challenges for Quantitative Analysis of Collective Adaptive Systems. In: Abadi, M., Lluch Lafuente, A. (eds) Trustworthy Global Computing. TGC 2013. Lecture Notes in Computer Science(), vol 8358. Springer, Cham. https://doi.org/10.1007/978-3-319-05119-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-05119-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05118-5
Online ISBN: 978-3-319-05119-2
eBook Packages: Computer ScienceComputer Science (R0)