Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust Binarization of Stereo and Monocular Document Images Using Percentile Filter

  • Conference paper
  • First Online:
Camera-Based Document Analysis and Recognition (CBDAR 2013)

Abstract

Camera captured documents can be a difficult case for standard binarization algorithms. These algorithms are specifically tailored to the requirements of scanned documents which in general have uniform illumination and high resolution with negligible geometric artifacts. Contrary to this, camera captured images generally are low resolution, contain non-uniform illumination and also posses geometric artifacts. The most important artifact is the defocused or blurred text which is the result of the limited depth of field of the general purpose hand-held capturing devices. These artifacts could be reduced with controlled capture with a single camera but it is inevitable for the case of stereo document images even with the orthoparallel camera setup.

Existing methods for binarization require tuning for the parameters separately both for the left and the right images of a stereo pair. In this paper, an approach for binarization based on the local adaptive background estimation using percentile filter has been presented. The presented approach works reasonably well under the same set of parameters for both left and right images. It also shows competitive results for monocular images in comparison with standard binarization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afzal, M., Krämer, M., Bukhari, S., Shafait, F., Breuel, T.: Improvements to uncalibrated feature-based stereo matching for document images by using text-line segmentation. In: Proceedings of the 10th IAPR International Workshop on Document Analysis Systems (2012)

    Google Scholar 

  2. Afzal, M., Bukhari, S., Krämer, M., Shafait, F., Breuel, T.: Robust stereo matching for document images using parameter selection of text-line extraction. In: 21st International Conference on Pattern Recognition, ICPR’12, Tsukuba, Japan, November 2012

    Google Scholar 

  3. Krämer, M., Afzal, M., Bukhari, S., Shafait, F., Breuel, T.: Robust stereo correspondence for documents by matching connected components of text-lines with dynamic programming. In: 21st International Conference on Pattern Recognition, ICPR’12, Tsukuba, Japan, November 2012

    Google Scholar 

  4. Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recogn. 33, 225–236 (2000)

    Article  Google Scholar 

  5. Bukhari, S.S., Shafait, F., Breuel, T.: Adaptive binarization of unconstrained hand-held camera-captured document images. J. Univ. Comput. Sci. 15(18), 3343–3363 (2009)

    Google Scholar 

  6. Sobottka, K., Kronenberg, H., Perroud, T., Bunke, H.: Text extraction from colored book and journal covers. IJDAR 2(4), 163–176 (2000)

    Google Scholar 

  7. Tsai, C.-M., Lee, H.-J.: Binarization of color document images via luminance and saturation color features. IEEE Trans. Image Process. 11(4), 434–451 (2002)

    Article  Google Scholar 

  8. Badekas, E., Nikolaou, N.A., Papamarkos, N.: Text localization and binarization in complex color documents. In: MLDM Posters, pp. 1–15 (2007)

    Google Scholar 

  9. Orii, H., Kawano, H., Maeda, H., Ikoma, N.: Text-color-independent binarization for degraded document image based on map-mrf approach. IEICE Trans. 94–A(11), 2342–2349 (2011)

    Article  Google Scholar 

  10. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  11. Gatos, B., Pratikakis, I., Perantonis, S.J.: Adaptive degraded document image binarization. Pattern Recogn. 39(3), 317–327 (2006)

    Article  MATH  Google Scholar 

  12. Shafait, F., Keysers, D., Breuel, T.: Efficient implementation of local adaptive thresholding techniques using integral images. In: Proceedings of the 15th Document Recognition and Retrieval Conference, Part of the IST/SPIE International Symposium on Electronic Imaging, January 26–31, San Jose, CA, USA, vol. 6815. SPIE, January 2008

    Google Scholar 

  13. Rivest-Hénault, D., Moghaddam, R.F., Cheriet, M.: A local linear level set method for the binarization of degraded historical document images. IJDAR 15(2), 101–124 (2012)

    Article  Google Scholar 

  14. Justusson, B.: Median filtering: statistical properties. In: Two-Dimensional Digital Signal Prcessing II. Topics in Applied Physics, pp. 161–196. Springer, Heidelberg (1981)

    Chapter  Google Scholar 

  15. Heygster, G.:

    Google Scholar 

  16. Soille, P.: On morphological operators based on rank filters. Pattern Recogn. 35(2), 527–535 (2002)

    Article  MATH  Google Scholar 

  17. Duin, R., Haringa, H., Zeelen, R.: Fast percentile filtering. Pattern Recogn. Lett. 4(4), 269–272 (1986)

    Article  Google Scholar 

  18. Pratikakis, I., Gatos, B., Ntirogiannis, K.: Icdar 2011 document image binarization contest (dibco 2011). In: 2011 International Conference on Document Analysis and Recognition (ICDAR), pp. 1506–1510, September 2011

    Google Scholar 

  19. Breuel, T.M.: The OCRopus Open Source OCR System. http://code.google.com/p/ocropus/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zeshan Afzal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Afzal, M.Z., Krämer, M., Bukhari, S.S., Yousefi, M.R., Shafait, F., Breuel, T.M. (2014). Robust Binarization of Stereo and Monocular Document Images Using Percentile Filter. In: Iwamura, M., Shafait, F. (eds) Camera-Based Document Analysis and Recognition. CBDAR 2013. Lecture Notes in Computer Science(), vol 8357. Springer, Cham. https://doi.org/10.1007/978-3-319-05167-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05167-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05166-6

  • Online ISBN: 978-3-319-05167-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics