Abstract
The human genome is diploid, that is each of its chromosomes comes in two copies. This requires to phase the single nucleotide polymorphisms (SNPs), that is, to assign them to the two copies, beyond just detecting them. The resulting haplotypes, lists of SNPs belonging to each copy, are crucial for downstream analyses in population genetics. Currently, statistical approaches, which avoid making use of direct read information, constitute the state-of-the-art. Haplotype assembly, which addresses phasing directly from sequencing reads, suffers from the fact that sequencing reads of the current generation are too short to serve the purposes of genome-wide phasing.
Future sequencing technologies, however, bear the promise to generate reads of lengths and error rates that allow to bridge all SNP positions in the genome at sufficient amounts of SNPs per read. Existing haplotype assembly approaches, however, profit precisely, in terms of computational complexity, from the limited length of current-generation reads, because their runtime is usually exponential in the number of SNPs per sequencing read. This implies that such approaches will not be able to exploit the benefits of long enough, future-generation reads.
Here, we suggest WhatsHap, a novel dynamic programming approach to haplotype assembly. It is the first approach that yields provably optimal solutions to the weighted minimum error correction (wMEC) problem in runtime linear in the number of SNPs per sequencing read, making it suitable for future-generation reads. WhatsHap is a fixed parameter tractable (FPT) approach with coverage as the parameter. We demonstrate that WhatsHap can handle datasets of coverage up to 20x, processing chromosomes on standard workstations in only 1-2 hours. Our simulation study shows that the quality of haplotypes assembled by WhatsHap significantly improves with increasing read length, both in terms of genome coverage as well as in terms of switch errors. The switch error rates we achieve in our simulations are superior to those obtained by state-of-the-art statistical phasers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aguiar, D., Istrail, S.: Hapcompass: A fast cycle basis algorithm for accurate haplotype assembly of sequence data. J. of Comp. Biol. 19(6), 577–590 (2012)
Aguiar, D., Istrail, S.: Haplotype assembly in polyploid genomes and identical by descent shared tracts. Bioinformatics 360, i352–i360 (2013)
Bansal, V., Bafna, V.: HapCUT: an efficient and accurate algorithm for the haplotype assembly problem. Bioinformatics 24(16), i153–i159 (2008)
Bansal, V., et al.: An MCMC algorithm for haplotype assembly from whole-genome sequence data. Genome Research 18(8), 1336–1346 (2008)
Boomsma, D.I., et al.: The Genome of the Netherlands: design, and project goals. European Journal of Human Genetics (2013), doi:10.1038/ejhg.2013.118
Chen, Z.Z., Deng, F., Wang, L.: Exact algorithms for haplotype assembly from whole-genome sequence data. Bioinformatics 29(16), 1938–1945 (2013)
Cilibrasi, R., van Iersel, L., Kelk, S., Tromp, J.: On the complexity of several haplotyping problems. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 128–139. Springer, Heidelberg (2005)
Delaneau, O., Howie, B., Cox, A., Zagury, J., Marchini, J.: Haplotype estimation using sequencing reads. Am. J. of Human Genetics 93(4), 687–696 (2013)
Deng, F., Cui, W., Wang, L.: A highly accurate heuristic algorithm for the haplotype assembly problem. BMC Genomics 14(suppl. 2), S2 (2013)
Earl, D.A., et al.: Assemblathon 1: A competitive assessment of de novo short read assembly methods. Genome Research (2011), doi:10.1101/gr.126599.111
Fouilhoux, P., Mahjoub, A.: Solving VLSI design and DNA sequencing problems using bipartization of graphs. Comp. Optim. and Appl. 51(2), 749–781 (2012)
Greenberg, H., Hart, W., Lancia, G.: Opportunities for combinatorial optimization in computational biology. Informs J. on Computing 16(3), 211–231 (2004)
Hartl, D., Clark, A.: Principles of Population Genetics. Sinauer Associates, Inc., Sunderland (2007)
He, D., Eskin, E.: Hap-seqX: expedite algorithm for haplotype phasing with imputataion using sequence data. Gene. 518(1), 2–6 (2013)
He, D., Han, B., Eskin, E.: Hap-seq: an optimal algorithm for haplotype phasing with imputation using sequencing data. J. Comp. Biol. 20(2), 80–92 (2013)
He, D., et al.: Optimal algorithms for haplotype assembly from whole-genome sequence data. Bioinformatics 26(12), i183–i190 (2010)
Howie, B., Donnelly, P., Marchini, J.: A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genetics 5(6), e1000529 (2009)
Lancia, G., Bafna, V., Istrail, S., Lippert, R., Schwartz, R.: SNPs problems, complexity and algorithms. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 182–193. Springer, Heidelberg (2001)
Levy, S., et al.: The diploid genome sequence of an individual human. PLoS Bio. (2007), doi:10.1371/journal.pbio.0050254
Li, H.: Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv (1303.3997) (2013)
Li, Y., et al.: MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 816–834 (2010)
Lippert, R., et al.: Algorithmic strategies for the single nucleotide polymorphism haplotype assembly problem. Briefings in Bioinformatics 3(1), 23–31 (2002)
Menelaou, A., Marchini, J.: Genotype calling and phasing using next-generation sequencing reads and a haplotype scaffold. Bioinformatics 29(1), 84–91 (2013)
Mossige, S.: An algorithm for Gray codes. Computing 18, 89–92 (1977)
Panconesi, A., Sozio, M.: Fast hare: A fast heuristic for single individual SNP haplotype reconstruction. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 266–277. Springer, Heidelberg (2004)
Scheet, P., Stephens, M.: A fast and flexible statistical model for large-scale population genotype data: Applications to inferring missing genotypes and haplotypic phase. American Journal of Human Genetics 78, 629–644 (2006)
Selvaraj, S., et al.: Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nature Biotechnology 31, 1111–1118 (2013)
The 1000 Genomes Project Consortium: A map of human genome variation from population-scale sequencing. Nature 467(7319), 1061–1073 (2010)
The International HapMap Consortium: A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007)
The International HapMap Consortium: Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010)
Wang, R.S., Wu, L.Y., Li, Z.P., Zhang, X.S.: Haplotype reconstruction from SNP fragments by minimum error correction. Bioinformatics 21(10), 2456–2462 (2005)
Yang, W.Y., Hormozdiari, F., Wang, Z., He, D., Pasaniuc, B., Eskin, E.: Leveraging reads that span multiple single nucleotide polymorphisms for haplotype inference from sequencing data. Bioinformatics 29(18), 2245–2252 (2013)
Zhang, Y.: A dynamic Bayesian Markov model for phasing and characterizing haplotypes in next-generation sequencing. Bioinformatics 29(7), 878–885 (2013)
Zhao, Y.T., Wu, L.Y., Zhang, J.H., Wang, R.S., Zhang, X.S.: Haplotype assembly from aligned weighted SNP fragments. Computational Biology and Chemistry 29, 281–287 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Patterson, M. et al. (2014). WhatsHap: Haplotype Assembly for Future-Generation Sequencing Reads. In: Sharan, R. (eds) Research in Computational Molecular Biology. RECOMB 2014. Lecture Notes in Computer Science(), vol 8394. Springer, Cham. https://doi.org/10.1007/978-3-319-05269-4_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-05269-4_19
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05268-7
Online ISBN: 978-3-319-05269-4
eBook Packages: Computer ScienceComputer Science (R0)