Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Generating Function Approach for Peptide Identification in Spectral Networks

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8394))

Abstract

Tandem mass (MS/MS) spectrometry has become the method of choice for protein identification and has launched a quest for the identification of every translated protein and peptide. However, computational developments have lagged behind the pace of modern data acquisition protocols and have become a major bottleneck in proteomics analysis of complex samples. As it stands today, attempts to identify MS/MS spectra against large databases (e.g., the human microbiome or 6-frame translation of the human genome) face a search space that is 10-100 times larger than the human proteome where it becomes increasingly challenging to separate between true and false peptide matches. As a result, the sensitivity of current state of the art database search methods drops by nearly 38% to such low identification rates that almost 90% of all MS/MS spectra are left as unidentified. We address this problem by extending the generating function approach to rigorously compute the joint spectral probability of multiple spectra being matched to peptides with overlapping sequences, thus enabling the confident assignment of higher significance to overlapping peptide-spectrum matches (PSMs). We find that these joint spectral probabilities can be several orders of magnitude more significant than individual PSMs, even in the ideal case when perfect separation between signal and noise peaks could be achieved per individual MS/MS spectrum. After benchmarking this approach on a typical lysate MS/MS dataset, we show that the proposed intersecting spectral probabilities for spectra from overlapping peptides improve peptide identification by 30-62%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Eng, J.K., McCormack, A.L., Yates, J.R.: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994)

    Article  Google Scholar 

  2. Perkins, D.N., Pappin, D.J., Creasy, D.M., Cottrell, J.S.: Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999)

    Article  Google Scholar 

  3. Agilent Technologies, http://spectrummill.mit.edu/

  4. Kim, S., Mischerikow, N., Bandeira, N., Navarro, J.D., Wich, L., Mohammed, S., Heck, A.J.R., Pevzner, P.A.: The generating function of CID, ETD, and CID/ETD pairs of tandem mass spectra: applications to database search. Mol. Cell. Proteomics. 9, 2840–2852 (2010)

    Article  Google Scholar 

  5. Nesvizhskii, A.I.: A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J. Proteomics 73, 2092–2123 (2010)

    Article  Google Scholar 

  6. Elias, J.E., Gygi, S.P.: Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007)

    Article  Google Scholar 

  7. Kim, S., Gupta, N., Pevzner, P.A.: Spectral probabilities and generating functions of tandem mass spectra: a strike against decoy databases. J. Proteome Res. 7, 3354–3363 (2008)

    Article  Google Scholar 

  8. Chourey, K., Nissen, S., Vishnivetskaya, T., Shah, M., Pfiffner, S., Hettich, R.L., Loffler, F.E.: Environmental proteomics reveals early microbial community responses to biostimulation at a uranium- and nitrate-contaminated site. Proteomics 13, 2921–2930 (2013)

    Google Scholar 

  9. Castellana, N.E., Payne, S.H., Shen, Z., Stanke, M., Bafna, V., Briggs, S.P.: Discovery and revision of Arabidopsis genes by proteogenomics. Proc. Natl. Acad. Sci. U. S. A. 105, 21034–21038 (2008)

    Article  Google Scholar 

  10. Jagtap, P., McGowan, T., Bandhakavi, S., Tu, Z.J., Seymour, S., Griffin, T.J., Rudney, J.D.: Deep metaproteomic analysis of human salivary supernatant. Proteomics 12, 992–1001 (2012)

    Article  Google Scholar 

  11. Guthals, A., Clauser, K.R., Bandeira, N.: Shotgun protein sequencing with meta-contig assembly. Mol. Cell. Proteomics 10, 1084–1096 (2012)

    Article  Google Scholar 

  12. Guthals, A., Clauser, K.R., Frank, A.M., Bandeira, N.: Sequencing-Grade De novo Analysis of MS/MS Triplets (CID/HCD/ETD) From Overlapping Peptides. J. Proteome Res. 12, 2846–2857 (2013)

    Article  Google Scholar 

  13. Bandeira, N., Tang, H., Bafna, V., Pevzner, P.A.: Shotgun protein sequencing by tandem mass spectra assembly. Anal. Chem. 76, 7221–7233 (2004)

    Article  Google Scholar 

  14. Guthals, A., Watrous, J.D., Dorrestein, P.C., Bandeira, N.: The spectral networks paradigm in high throughput mass spectrometry. Mol. Biosyst. 8, 2535–2544 (2012)

    Article  Google Scholar 

  15. Bandeira, N., Clauser, K.R., Pevzner, P.A.: Shotgun protein sequencing: assembly of peptide tandem mass spectra from mixtures of modified proteins. Mol. Cell. Proteomics 6, 1123–1134 (2007)

    Article  Google Scholar 

  16. Edelmann, M.J.: Strong Cation Exchange Chromatography in Analysis of Posttranslational Modifications: Innovations and Perspectives (2011)

    Google Scholar 

  17. Swaney, D.L., Wenger, C.D., Coon, J.J.: Value of using multiple proteases for large-scale mass spectrometry-based proteomics. J. Proteome Res. 9, 1323–1329 (2010)

    Article  Google Scholar 

  18. Bandeira, N., Tsur, D., Frank, A., Pevzner, P.A.: Protein identification by spectral networks analysis. Proc. Natl. Acad. Sci. U. S. A. 104, 6140–6145 (2007)

    Article  Google Scholar 

  19. Pevzner, P.A., Dancík, V., Tang, C.L.: Mutation-tolerant protein identification by mass spectrometry. J. Comput. Biol. 7, 777–787 (2000)

    Article  Google Scholar 

  20. Dancík, V., Addona, T.A., Clauser, K.R., Vath, J.E., Pevzner, P.A.: De novo peptide sequencing via tandem mass spectrometry. J. Comput. Biol. 6, 327–342 (1999)

    Article  Google Scholar 

  21. Frank, A.M., Savitski, M.M., Nielsen, M.L., Zubarev, R.A., Pevzner, P.A.: De novo peptide sequencing and identification with precision mass spectrometry. J. Proteome Res. 6, 114–123 (2007)

    Article  Google Scholar 

  22. Kessner, D., Chambers, M., Burke, R., Agus, D., Mallick, P.: ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24, 2534–2536 (2008)

    Article  Google Scholar 

  23. Frank, A.M., Bandeira, N., Shen, Z., Tanner, S., Briggs, S.P., Smith, R.D., Pevzner, P.A.: Clustering millions of tandem mass spectra. J. Proteome Res. 7, 113–122 (2008)

    Article  Google Scholar 

  24. Bairoch, A., Apweiler, R., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale, D.A., O’Donovan, C., Redaschi, N., Yeh, L.-S.L.: The Universal Protein Resource (UniProt). Nucleic Acids Res. 35, 190–195 (2008)

    Google Scholar 

  25. Craig, R., Beavis, R.C.: TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467 (2004)

    Article  Google Scholar 

  26. Tabb, D.L., MacCoss, M.J., Wu, C.C., Anderson, S.D., Yates, J.R.: Similarity among tandem mass spectra from proteomic experiments: detection, significance, and utility. Anal. Chem. 75, 2470–2477 (2003)

    Article  Google Scholar 

  27. Jeong, K., Kim, S., Bandeira, N.: False discovery rates in spectral identification. BMC Bioinformatics 13(suppl. 1), S2 (2012)

    Google Scholar 

  28. Gupta, N., Bandeira, N., Keich, U., Pevzner, P.A.: Target-Decoy Approach and False Discovery Rate: When Things Go Wrong. J. Am. Soc. Mass Spectrom 22, 1111–1120 (2011)

    Article  Google Scholar 

  29. Guthals, A., Bandeira, N.: Peptide identification by tandem mass spectrometry with alternate fragmentation modes. Mol. Cell. Proteomics 11, 550–557 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Guthals, A., Boucher, C., Bandeira, N. (2014). The Generating Function Approach for Peptide Identification in Spectral Networks. In: Sharan, R. (eds) Research in Computational Molecular Biology. RECOMB 2014. Lecture Notes in Computer Science(), vol 8394. Springer, Cham. https://doi.org/10.1007/978-3-319-05269-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05269-4_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05268-7

  • Online ISBN: 978-3-319-05269-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics