Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Model Checking of a Flapping-Wing Mirco-Air-Vehicle Trajectory Tracking Controller Subject to Disturbances

  • Chapter
Robot Intelligence Technology and Applications 2

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 274))

Abstract

This paper proposes a model checking method for a trajectory tracking controller for a flapping wing micro-air-vehicle (MAV) under disturbance. Due to the coupling of the continuous vehicle dynamics and the discrete guidance laws, the system is a hybrid system. Existing hybrid model checkers approximate the model by partitioning the continuous state space into invariant regions (flow pipes) through the use of reachable set computations. There are currently no efficient methods for accounting for unknown disturbances to the system. Neglecting disturbances for the trajectory tracking problem underestimates the reachable set and can fail to detect when the system would reach an unsafe condition. For linear systems, we propose the use of the H-infinity norm to augment the flow pipes and account for disturbances. We show that dynamic inversion can be coupled with our method to address the nonlinearities in the flapping-wing control system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verification. IEEE Transactions on Automatic Control 48(1), 64–75 (2003)

    Article  MathSciNet  Google Scholar 

  2. Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata using polygonal flow pipe approximations. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 76–90. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Silva, B.I., Richeson, K., Krogh, B., Chutinan, A.: Modeling and verifying hybrid dynamic systems using checkmate. In: Proceedings of 4th International Conference on Automation of Mixed Processes, pp. 323–328 (2000)

    Google Scholar 

  4. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Silva, B.I., Stursberg, O., Krogh, B.H., Engell, S.: An assessment of the current status of algorithmic approaches to the verification of hybrid systems. In: Proceedings of the 40th IEEE Conference on Decision and Control, vol. 3, pp. 2867–2874. IEEE (2001)

    Google Scholar 

  6. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Hytech: A model checker for hybrid systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  7. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138(1), 3–34 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Doman, D.B., Oppenheimer, M.W., Sigthorsson, D.O.: Wingbeat shape modulation for flapping-wing micro-air-vehicle control during hover. Journal of Guidance, Control, and Dynamics 33(3), 724–739 (2010)

    Article  Google Scholar 

  9. Baier, C., Katoen, J.P., et al.: Principles of model checking, vol. 26202649. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  10. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: An openSource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Goppert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Goppert, J., Gallagher, J.C., Hwang, I., Matson, E. (2014). Model Checking of a Flapping-Wing Mirco-Air-Vehicle Trajectory Tracking Controller Subject to Disturbances. In: Kim, JH., Matson, E., Myung, H., Xu, P., Karray, F. (eds) Robot Intelligence Technology and Applications 2. Advances in Intelligent Systems and Computing, vol 274. Springer, Cham. https://doi.org/10.1007/978-3-319-05582-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05582-4_46

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05581-7

  • Online ISBN: 978-3-319-05582-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics