Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automatic Optimization of Depth Electrode Trajectory Planning

  • Conference paper
  • First Online:
Clinical Image-Based Procedures. Translational Research in Medical Imaging (CLIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8361))

Included in the following conference series:

Abstract

This paper presents a fully automatic procedure for optimization of depth electrode implantation planning in epilepsy. To record intracranial EEG in some patients with intractable epilepsy, depth electrodes are implanted through holes in the skull. The proposed fully automatic procedure maximizes recording coverage of the target volume by estimating the EEG recorded from each contact, while minimizing the risk of approaching vessels and other critical structures. All structures, including the hippocampus and amygdala were automatically segmented. We retrospectively validated the procedure for mesial temporal lobe implantations in 11 hemispheres. The automatic trajectories recorded from a larger volume of interest than the original manually selected trajectories while better avoiding the segmented structures. The procedure is integrated into a neuronavigation system enabling the surgeon to visualize the selected trajectories from an ordered list and, if necessary, enables re-planning a trajectory in near real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Engel, J., Pedley, T.A.: Epilepsy: A Comprehensive Textbook. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia (2008)

    Google Scholar 

  2. Bériault, S., Subaie, F.A., Lalys, F., Collins, D.L., Pike, G.B., Sadikot, A.F.: A multi-modal approach to computer-assisted deep brain stimulation trajectory planning. Int. J. Comput. Assist. Radiol. Surg. 7, 1–18 (2012)

    Article  Google Scholar 

  3. Essert, C., Haegelen, C., Lalys, F., Abadie, A., Jannin, P.: Automatic computation of electrode trajectories for deep brain stimulation: a hybrid symbolic and numerical approach. Int. J. Comput. Assist. Radiol. Surg. 7, 517–532 (2012)

    Article  Google Scholar 

  4. Guo, T., Parrent, A.G., Peters, T.M.: Automatic target and trajectory identification for deep brain stimulation (DBS) procedures. In: Ayache, Nicholas, Ourselin, Sébastien, Maeder, Anthony (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 483–490. Springer, Heidelberg (2007)

    Google Scholar 

  5. Liu, Y., et al.: A surgeon specific automatic path planning algorithm for deep brain stimulation. In: Proceedings of the SPIE 8316 Medical Imaging 2011, p. 83161D (2011)

    Google Scholar 

  6. Seitel, A., et al.: Computer-assisted trajectory planning for percutaneous needle insertions. Med. Phys. 38, 3246–3259 (2011)

    Article  Google Scholar 

  7. De Momi, E., Caborni, C., Cardinale, F., Castana, L., Casaceli, G., Cossu, M., Antiga, L., Ferrigno, G.: Automatic trajectory planner for StereoElectroEncephaloGraphy procedures: a retrospective study. IEEE Trans. Biomed. Eng. 4, 986–993 (2013)

    Article  Google Scholar 

  8. Mercier, L., et al.: New prototype neuronavigation system based on preoperative imaging and intraoperative freehand ultrasound: system description and validation. Int. J. Comput. Assist. Radiol. Surg. 6, 507–522 (2011)

    Article  Google Scholar 

  9. Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17(1), 87–97 (1998)

    Article  Google Scholar 

  10. Nyul, L.G., Udupa, J.K., Saha, P.K.: Incorporating a measure of local scale in voxel-based 3-D image registration. IEEE Trans. Med. Imaging 22, 228–237 (2003)

    Article  Google Scholar 

  11. Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., et al.: A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM). Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1293–1322 (2001)

    Article  Google Scholar 

  12. Eskildsen, S.F.: BEaST: brain extraction based on nonlocal segmentation technique. NeuroImage 59, 2362–2373 (2012)

    Article  Google Scholar 

  13. Collins, D.L., Pruessner, J.C.: Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion. NeuroImage 52, 1355–1366 (2010)

    Article  Google Scholar 

  14. Collins, D.L., Zijdenbos, A., Baaré, W., Evans, A.: ANIMAL+INSECT: improved cortical structure segmentation. In: Kuba, A., Šáamal, M., Todd-Pokropek, A. (eds.) IPMI 1999. LNCS, vol. 1613, pp. 210–223. Springer, Heidelberg (1999)

    Google Scholar 

  15. Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 27, 425–441 (2008)

    Article  Google Scholar 

  16. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)

    Google Scholar 

  17. Danielsson, P.E.: Euclidean distance mapping. Comput. Graph. Image Process. 14, 227–248 (1980)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by CIHR MOP-97820 and by MNI CIBC postdoctoral fellowship in brain imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rina Zelmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zelmann, R. et al. (2014). Automatic Optimization of Depth Electrode Trajectory Planning. In: Erdt, M., et al. Clinical Image-Based Procedures. Translational Research in Medical Imaging. CLIP 2013. Lecture Notes in Computer Science(), vol 8361. Springer, Cham. https://doi.org/10.1007/978-3-319-05666-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05666-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05665-4

  • Online ISBN: 978-3-319-05666-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics