Abstract
Automatic image tagging is one of the most important research topics in multimedia. How to achieve accurate image tagging to bridge the semantic gap between images’ content and users’ semantic understanding has been widely studied in the last decade. One common approach is to convert image tagging to a multi-task learning problem. However, most existing methods ignore tag correlations in the learning process. In this paper, we show the importance of tag correlations in conducting multi-task learning. We formulate image tagging as a multi-output regression problem accounting for tag correlations, which are captured by the covariance matrix of the regression coefficients and the noise across all tags respectively. The combination of multi-output regression with tag correlation analysis takes advantage of the latent dependencies among tags to overcome limitations of existing work. Extensive experiments have been conducted on two benchmark datasets, and the results confirm that our approach outperforms the state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bi, W., Kwok, J.T.: Multilabel classification on tree- and dag-structured hierarchies. In: ICML, pp. 17–24 (2011)
Breiman, L., Friedman, J.H.: Predicting multivariate responses in multiple linear regression. J. R. Stat. Soc. Ser. B Stat. Methodol. 59(1), 3–4 (2002)
Caruana, R.: Multitask learning. Machine Learning 28(1), 41–75 (1997)
Chang, E.Y., Goh, K., Sychay, G., Wu, G.: Cbsa: Content-based soft annotation for multimodal image retrieval using bayes point machines. IEEE Trans. Circuits Syst. Video Techn. 13(1), 26–38 (2003)
Chen, G., Song, Y., Wang, F., Zhang, C.: Semi-supervised multi-label learning by solving a sylvester equation. In: SDM, pp. 410–419 (2008)
Chua, T.-S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: Nus-wide: A real-world web image database from national university of singapore. In: CIVR (2009)
Fu, H., Zhang, Q., Qiu, G.: Random forest for image annotation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 86–99. Springer, Heidelberg (2012)
Guillaumin, M., Mensink, T., Verbeek, J.J., Schmid, C.: Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation. In: ICCV, pp. 309–316 (2009)
Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer (October 2002)
Kim, S., Sohn, K.-A., Xing, E.P.: A multivariate regression approach to association analysis of a quantitative trait network. Bioinformatics 25(12) (2009)
Kim, S., Xing, E.P.: Tree-guided group lasso for multi-response regression with structured sparsity, with an application to eqtl mapping. Ann. Appl. Stat. 6(3), 1095–1117 (2012)
Lin, Z., Ding, G., Hu, M., Wang, J., Sun, J.: Automatic image annotation using tag-related random search over visual neighbors. In: CIKM, pp. 1784–1788 (2012)
Liu, D., Yan, S., Rui, Y., Zhang, H.-J.: Unified tag analysis with multi-edge graph. In: ACM Multimedia, pp. 25–34 (2010)
Liu, J., Wang, B., Li, M., Li, Z., Ma, W.-Y., Lu, H., Ma, S.: Dual cross-media relevance model for image annotation. In: ACM Multimedia, pp. 605–614 (2007)
Liu, Y., Jin, R., Yang, L.: Semi-supervised multi-label learning by constrained non-negative matrix factorization. In: AAAI, pp. 421–426 (2006)
Müller, H., Marchand-Maillet, S., Pun, T.: The truth about corel - evaluation in image retrieval. In: Lew, M., Sebe, N., Eakins, J.P. (eds.) CIVR 2002. LNCS, vol. 2383, pp. 38–49. Springer, Heidelberg (2002)
Rai, P., Kumar, A., Daumé III, H.: Simultaneously leveraging output and task structures for multiple-output regression. In: NIPS, pp. 3194–3202 (2012)
Rothman, A.J., Levina, E., Zhu, J.: Sparse multivariate regression with covariance estimation. J. Comput. Graph. Statist. 19(4), 947–962 (2010)
Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)
Wu, F., Yuan, Y., Rui, Y., Yan, S., Zhuang, Y.: Annotating web images using nova: Non-convex group sparsity. In: ACM Multimedia, pp. 509–518 (2012)
Zhang, Y., Yeung, D.-Y.: A convex formulation for learning task relationships in multi-task learning. In: UAI, pp. 733–442 (2010)
Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: NIPS (2003)
Zhu, G., Yan, S., Ma, Y.: Image tag refinement towards low-rank, content-tag prior and error sparsity. In: ACM Multimedia, pp. 461–470 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Cai, H., Huang, Z., Zhu, X., Zhang, Q., Li, X. (2014). Multi-Output Regression with Tag Correlation Analysis for Effective Image Tagging. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds) Database Systems for Advanced Applications. DASFAA 2014. Lecture Notes in Computer Science, vol 8422. Springer, Cham. https://doi.org/10.1007/978-3-319-05813-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-05813-9_3
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05812-2
Online ISBN: 978-3-319-05813-9
eBook Packages: Computer ScienceComputer Science (R0)