Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-Output Regression with Tag Correlation Analysis for Effective Image Tagging

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8422))

Included in the following conference series:

Abstract

Automatic image tagging is one of the most important research topics in multimedia. How to achieve accurate image tagging to bridge the semantic gap between images’ content and users’ semantic understanding has been widely studied in the last decade. One common approach is to convert image tagging to a multi-task learning problem. However, most existing methods ignore tag correlations in the learning process. In this paper, we show the importance of tag correlations in conducting multi-task learning. We formulate image tagging as a multi-output regression problem accounting for tag correlations, which are captured by the covariance matrix of the regression coefficients and the noise across all tags respectively. The combination of multi-output regression with tag correlation analysis takes advantage of the latent dependencies among tags to overcome limitations of existing work. Extensive experiments have been conducted on two benchmark datasets, and the results confirm that our approach outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bi, W., Kwok, J.T.: Multilabel classification on tree- and dag-structured hierarchies. In: ICML, pp. 17–24 (2011)

    Google Scholar 

  2. Breiman, L., Friedman, J.H.: Predicting multivariate responses in multiple linear regression. J. R. Stat. Soc. Ser. B Stat. Methodol. 59(1), 3–4 (2002)

    Article  MathSciNet  Google Scholar 

  3. Caruana, R.: Multitask learning. Machine Learning 28(1), 41–75 (1997)

    Article  MathSciNet  Google Scholar 

  4. Chang, E.Y., Goh, K., Sychay, G., Wu, G.: Cbsa: Content-based soft annotation for multimodal image retrieval using bayes point machines. IEEE Trans. Circuits Syst. Video Techn. 13(1), 26–38 (2003)

    Article  Google Scholar 

  5. Chen, G., Song, Y., Wang, F., Zhang, C.: Semi-supervised multi-label learning by solving a sylvester equation. In: SDM, pp. 410–419 (2008)

    Google Scholar 

  6. Chua, T.-S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: Nus-wide: A real-world web image database from national university of singapore. In: CIVR (2009)

    Google Scholar 

  7. Fu, H., Zhang, Q., Qiu, G.: Random forest for image annotation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 86–99. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Guillaumin, M., Mensink, T., Verbeek, J.J., Schmid, C.: Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation. In: ICCV, pp. 309–316 (2009)

    Google Scholar 

  9. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer (October 2002)

    Google Scholar 

  10. Kim, S., Sohn, K.-A., Xing, E.P.: A multivariate regression approach to association analysis of a quantitative trait network. Bioinformatics 25(12) (2009)

    Google Scholar 

  11. Kim, S., Xing, E.P.: Tree-guided group lasso for multi-response regression with structured sparsity, with an application to eqtl mapping. Ann. Appl. Stat. 6(3), 1095–1117 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lin, Z., Ding, G., Hu, M., Wang, J., Sun, J.: Automatic image annotation using tag-related random search over visual neighbors. In: CIKM, pp. 1784–1788 (2012)

    Google Scholar 

  13. Liu, D., Yan, S., Rui, Y., Zhang, H.-J.: Unified tag analysis with multi-edge graph. In: ACM Multimedia, pp. 25–34 (2010)

    Google Scholar 

  14. Liu, J., Wang, B., Li, M., Li, Z., Ma, W.-Y., Lu, H., Ma, S.: Dual cross-media relevance model for image annotation. In: ACM Multimedia, pp. 605–614 (2007)

    Google Scholar 

  15. Liu, Y., Jin, R., Yang, L.: Semi-supervised multi-label learning by constrained non-negative matrix factorization. In: AAAI, pp. 421–426 (2006)

    Google Scholar 

  16. Müller, H., Marchand-Maillet, S., Pun, T.: The truth about corel - evaluation in image retrieval. In: Lew, M., Sebe, N., Eakins, J.P. (eds.) CIVR 2002. LNCS, vol. 2383, pp. 38–49. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Rai, P., Kumar, A., Daumé III, H.: Simultaneously leveraging output and task structures for multiple-output regression. In: NIPS, pp. 3194–3202 (2012)

    Google Scholar 

  18. Rothman, A.J., Levina, E., Zhu, J.: Sparse multivariate regression with covariance estimation. J. Comput. Graph. Statist. 19(4), 947–962 (2010)

    Article  MathSciNet  Google Scholar 

  19. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  20. Wu, F., Yuan, Y., Rui, Y., Yan, S., Zhuang, Y.: Annotating web images using nova: Non-convex group sparsity. In: ACM Multimedia, pp. 509–518 (2012)

    Google Scholar 

  21. Zhang, Y., Yeung, D.-Y.: A convex formulation for learning task relationships in multi-task learning. In: UAI, pp. 733–442 (2010)

    Google Scholar 

  22. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: NIPS (2003)

    Google Scholar 

  23. Zhu, G., Yan, S., Ma, Y.: Image tag refinement towards low-rank, content-tag prior and error sparsity. In: ACM Multimedia, pp. 461–470 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cai, H., Huang, Z., Zhu, X., Zhang, Q., Li, X. (2014). Multi-Output Regression with Tag Correlation Analysis for Effective Image Tagging. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds) Database Systems for Advanced Applications. DASFAA 2014. Lecture Notes in Computer Science, vol 8422. Springer, Cham. https://doi.org/10.1007/978-3-319-05813-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05813-9_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05812-2

  • Online ISBN: 978-3-319-05813-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics