Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fixed-Point Theory in the Varieties \(\mathcal{D}_{n}\)

  • Conference paper
Relational and Algebraic Methods in Computer Science (RAMICS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8428))

  • 601 Accesses

Abstract

The varieties of lattices \(\mathcal{D}_n\), n ≥ 0, were introduced in [Nat90] and studied later in [Sem05]. These varieties might be considered as generalizations of the variety of distributive lattices which, as a matter of fact, coincides with \(\mathcal{D}_{0}\). It is well known that least and greatest fixed-points of terms are definable on distributive lattices; this is an immediate consequence of the fact that the equation \(\phi^{2}(\bot) = \phi(\bot)\) holds on distributive lattices, for any lattice term φ(x). In this paper we propose a generalization of this fact by showing that the identity φ n + 2(x) = φ n + 1(x) holds in \(\mathcal{D}n\), for any lattice term φ(x) and for \(x \in \{\top,\bot\}\). Moreover, we prove that the equations φ n + 1(x) = φ n(x), \(x = \bot,\top\), do not hold in the variety \(\mathcal{D}_{n}\) nor in the variety \(\mathcal{D}_{n} \cap \mathcal{D}_{n}^{op}\), where \(\mathcal{D}_{n}^{op}\) is the variety containing the lattices L op, for \(L \in \mathcal{D}_{n}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnold, A., Niwiński, D.: Rudiments of μ-Calculus, Studies in Logic and the Foundations of Mathematics, vol. 146. Elsevier, Amsterdam (2001)

    Google Scholar 

  2. Awodey, S.: Category Theory. In: Oxford Logic Guides, 2nd edn., vol. 52. Oxford University Press, Oxford (2010)

    Google Scholar 

  3. Birkhoff, G.: Lattice Theory, American Mathematical Society Colloquium Publications, 3rd edn., vol. 25. American Mathematical Society, Providence (1973)

    Google Scholar 

  4. D’Agostino, G., Hollenberg, M.: Logical Questions Concerning the mu-Calculus: Interpolation, Lyndon and Los-Tarski. J. Symb. Log. 65, 310–332 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Davey, B., Priestley, H.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, New York (2002)

    Book  MATH  Google Scholar 

  6. Day, A.: Doubling constructions in lattice theory. Can. J. Math. 44, 252–269 (1992)

    Article  MATH  Google Scholar 

  7. Fortier, J., Santocanale, L.: Cuts for circular proofs: semantics and cut-elimination. In: Rocca, S.R.D. (ed.) CSL. LIPIcs, vol. 23, pp. 248–262. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2013)

    Google Scholar 

  8. Freese, R., Ježek, J., Nation, J.: Free Lattices, Mathematical Surveys and Monographs, vol. 42. American Mathematical Society, Providence (1995)

    Google Scholar 

  9. Goldblatt, R.: A Kripke-Joyal Semantics for Noncommutative Logic in Quantales. In: Governatori, G., Hodkinson, I.M., Venema, Y. (eds.) Advances in Modal Logic, pp. 209–225. College Publications (2006)

    Google Scholar 

  10. Grätzer, G.: General Lattice Theory, 2nd edn. Birkha ̈user Verlag, Basel (1998); New appendices by the author with Davey, B.A., Freese, R., Ganter, B., Greferath, M., Jipsen, P., Priestley, H.A., Rose, H., Schmidt, E.T., Schmidt, S.E., Wehrung, F., Wille, R

    Google Scholar 

  11. Grätzer, G.: Universal Algebra, 2nd printing of the 2nd edn. Springer, New York (2008)

    Google Scholar 

  12. Hansen, H.: Monotonic Modal Logics. Master’s thesis, Institute for Logic, Language and Computation, Universiteit van Amsterdam (2003), Available as: ILLC technical report: PP-2003-24

    Google Scholar 

  13. Kozen, D.: Results on the Propositional mu-Calculus. Theor. Comput. Sci. 27, 333–354 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kracht, M., Wolter, F.: Normal monomodal logics can simulate all others. J. Symb. Log. 64, 99–138 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mac Lane, S.: Categories for the Working Mathematician, Graduate Texts in Mathematics, 2nd edn., vol. 5. Springer, New York (1998)

    Google Scholar 

  16. Nation, J.B.: An approach to lattice varieties of finite height. Algebra Universalis 27, 521–543 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Niwinski, D., Walukiewicz, I.: Games for the mu-Calculus. Theor. Comput. Sci. 163, 99–116 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Santocanale, L.: The alternation hierarchy for the theory of μ-lattices. Theory Appl. Categ. 9, 166–197 (2001)

    MATH  MathSciNet  Google Scholar 

  19. Santocanale, L.: Free μ-lattices. J. Pure Appl. Algebra 168, 227–264 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Santocanale, L.: A duality for finite lattices (2009), http://hal.archives-ouvertes.fr/hal-00432113 (unpublished)

  21. Semenova, M.V.: Lattices that are embeddable in suborder lattices. Algebra and Logic 44 (2005)

    Google Scholar 

  22. Venema, Y., Santocanale, L.: Uniform interpolation for monotone modal logic. In: Beklemishev, L., Goranko, V., Shehtman, V. (eds.) Advances in Modal Logic, vol. 8, pp. 350–370. College Publications (2010)

    Google Scholar 

  23. Walukiewicz, I.: Completeness of Kozen’s Axiomatisation of the Propositional μ-Calculus. Inf. Comput. 157, 142–182 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Frittella, S., Santocanale, L. (2014). Fixed-Point Theory in the Varieties \(\mathcal{D}_{n}\) . In: Höfner, P., Jipsen, P., Kahl, W., Müller, M.E. (eds) Relational and Algebraic Methods in Computer Science. RAMICS 2014. Lecture Notes in Computer Science, vol 8428. Springer, Cham. https://doi.org/10.1007/978-3-319-06251-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06251-8_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06250-1

  • Online ISBN: 978-3-319-06251-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics