Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quiescent Consistency: Defining and Verifying Relaxed Linearizability

  • Conference paper
FM 2014: Formal Methods (FM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8442))

Included in the following conference series:

  • 1947 Accesses

Abstract

Concurrent data structures like stacks, sets or queues need to be highly optimized to provide large degrees of parallelism with reduced contention. Linearizability, a key consistency condition for concurrent objects, sometimes limits the potential for optimization. Hence algorithm designers have started to build concurrent data structures that are not linearizable but only satisfy relaxed consistency requirements.

In this paper, we study quiescent consistency as proposed by Shavit and Herlihy, which is one such relaxed condition. More precisely, we give the first formal definition of quiescent consistency, investigate its relationship with linearizability, and provide a proof technique for it based on (coupled) simulations. We demonstrate our proof technique by verifying quiescent consistency of a (non-linearizable) FIFO queue built using a diffraction tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Afek, Y., Korland, G., Natanzon, M., Shavit, N.: Scalable producer-consumer pools based on elimination-diffraction trees. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010, Part II. LNCS, vol. 6272, pp. 151–162. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Afek, Y., Korland, G., Yanovsky, E.: Quasi-linearizability: Relaxed consistency for improved concurrency. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 395–410. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison under abstraction for verifying linearizability. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 477–490. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Aspnes, J., Herlihy, M., Shavit, N.: Counting networks. Journal of the ACM 41(5), 1020–1048 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Colvin, R., Doherty, S., Groves, L.: Verifying concurrent data structures by simulation. ENTCS 137, 93–110 (2005)

    Google Scholar 

  6. de Roever, W., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods and their Comparison. Cambridge Tracts in Theoretical Computer Science, vol. 47. Cambridge University Press (1998)

    Google Scholar 

  7. Derrick, J., Boiten, E.: Refinement in Z and Object-Z: Foundations and Advanced Applications. Springer (May 2001)

    Google Scholar 

  8. Derrick, J., Boiten, E.A.: Non-atomic refinement in Z. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1709, pp. 1477–1496. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanizing a correctness proof for a lock-free concurrent stack. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 78–95. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanically verified proof obligations for linearizability. ACM Trans. Program. Lang. Syst. 33(1), 4 (2011)

    Article  Google Scholar 

  11. Derrick, J., Wehrheim, H.: Using coupled simulations in non-atomic refinement. In: Bert, D., Bowen, J.P., King, S., Waldén, M. (eds.) ZB 2003. LNCS, vol. 2651, pp. 127–147. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Henzinger, T.A., Kirsch, C.M., Payer, H., Sezgin, A., Sokolova, A.: Quantitative relaxation of concurrent data structures. In: POPL, pp. 317–328. ACM (2013)

    Google Scholar 

  13. Herlihy, M., Shavit, N.: The art of multiprocessor programming. Morgan Kaufmann (2008)

    Google Scholar 

  14. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects. ACM TOPLAS 12(3), 463–492 (1990)

    Article  Google Scholar 

  15. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979)

    Article  MATH  Google Scholar 

  16. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications and interactive proofs with KIV. In: Automated Deduction—A Basis for Applications, Interactive Theorem Proving, vol. II, ch. 1, pp. 13–39. Kluwer (1998)

    Google Scholar 

  17. Schellhorn, G., Wehrheim, H., Derrick, J.: How to prove algorithms linearisable. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 243–259. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Shapiro, M., Kemme, B.: Eventual consistency. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 1071–1072. Springer US (2009)

    Google Scholar 

  19. Shavit, N.: Data structures in the multicore age. Commun. ACM 54(3), 76–84 (2011)

    Article  Google Scholar 

  20. Tofan, B., Schellhorn, G., Reif, W.: Formal verification of a lock-free stack with hazard pointers. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916, pp. 239–255. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-concurrent linearisable objects. In: PPoPP 2006, pp. 129–136. ACM (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Derrick, J., Dongol, B., Schellhorn, G., Tofan, B., Travkin, O., Wehrheim, H. (2014). Quiescent Consistency: Defining and Verifying Relaxed Linearizability. In: Jones, C., Pihlajasaari, P., Sun, J. (eds) FM 2014: Formal Methods. FM 2014. Lecture Notes in Computer Science, vol 8442. Springer, Cham. https://doi.org/10.1007/978-3-319-06410-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06410-9_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06409-3

  • Online ISBN: 978-3-319-06410-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics