Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Comparison of h 2 and MMM for Mutex Pair Detection Applied to Pattern Databases

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8436))

Included in the following conference series:

  • 2672 Accesses

Abstract

In state space search or planning, a pair of variable-value assignments that does not occur in any reachable state is considered a mutually exclusive (mutex) pair. To improve the efficiency of planners, the problem of detecting such pairs has been addressed frequently in the planning literature. No known efficient method for detecting mutex pairs is able to find all such pairs. Hence, the number and type of mutex constraints detected by various algorithms are different from one another.

The purpose of this paper is to study the effects on search performance when errors are made by the mutex detection method that is informing the construction of a pattern database (PDB). PDBs are deployed for creating heuristic functions that are then used to guide search. We consider two mutex detection methods, h 2, which can fail to recognize a mutex pair but never regards a reachable pair as mutex, and the sampling-based method MMM, which makes the opposite type of error. Both methods are very often perfect, i.e. they exactly identify which pairs are mutex and which are reachable. In the cases that they err that we examine in this paper, h 2’s errors cause search to be moderately slower (7% −24%) whereas MMM’s errors have very little effect on search speed or suboptimality, even when its sample size is quite small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berend, D., Kontorovich, A.: The missing mass problem. Stat. and Prob. Lett. 82, 1102–1110 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artif. Intell. 90(1), 1636–1642 (1995)

    Google Scholar 

  3. Bonet, B., Geffner, H.: Planning as heuristic search: New results. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS (LNAI), vol. 1809, pp. 360–372. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Chen, Y., Huang, R., Xing, Z., Zhang, W.: Long-distance mutual exclusion for planning. Artif. Intell. 173(2), 365–391 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Culberson, J., Schaeffer, J.: Pattern databases. Comput. Intell. 14(3), 318–334 (1998)

    Article  MathSciNet  Google Scholar 

  6. Edelkamp, S., Helmert, M.: MIPS: The Model-Checking Integrated Planning System. AI Magazine 22(3), 67–72 (2001)

    Google Scholar 

  7. Fox, M., Long, D.: The automatic inference of state invariants in TIM. J. Artif. Intell. Res. 9, 367–421 (1998)

    MATH  Google Scholar 

  8. Gerevini, A., Saetti, A., Serina, I.: Planning through stochastic local search and temporal action graphs in lpg. J. Artif. Int. Res. 20, 239–290 (2003)

    MATH  Google Scholar 

  9. Gerevini, A., Schubert, L.K.: Discovering state constraints in DISCOPLAN: Some new results. In: AAAI/IAAI, pp. 761–767 (2000)

    Google Scholar 

  10. Gerevini, A., Schubert, L.: Inferring state constraints for domain-independent planning. In: AAAI/IAAI, pp. 905–912 (1998)

    Google Scholar 

  11. Harris, L.R.: The heuristic search under conditions of error. Artificial Intelligence 5(3), 217–234 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  12. Haslum, P.: Admissible Heuristics for Automated Planning. Linköping Studies in Science and Technology: Dissertations. Dept. of Computer and Information Science, Linköping Univ. (2006)

    Google Scholar 

  13. Haslum, P., Bonet, B., Geffner, H.: New admissible heuristics for domain-independent planning. In: AAAI, pp. 1163–1168 (2005)

    Google Scholar 

  14. Helmert, M.: The Fast Downward planning system. J. Artif. Intell. Res. 26, 191–246 (2006)

    Article  MATH  Google Scholar 

  15. Helmert, M., Lasinger, H.: The Scanalyzer domain: Greenhouse logistics as a planning problem. In: ICAPS, pp. 234–237 (2010)

    Google Scholar 

  16. Hernádvölgyi, I., Holte, R.: PSVN: A vector representation for production systems. Technical Report TR-99-04, Dept. of Computer Science, Univ. of Ottawa (1999)

    Google Scholar 

  17. Kautz, H.: SATPLAN04: Planning as satisfiability. In: 4th International Planning Competition Booklet (2004)

    Google Scholar 

  18. Kautz, H., Selman, B.: Pushing the envelope: Planning, propositional logic, and stochastic search, pp. 1194–1201. AAAI Press (1996)

    Google Scholar 

  19. Penberthy, J., Weld, D.: Temporal planning with continuous change. In: AAAI, pp. 1010–1015 (1994)

    Google Scholar 

  20. Rintanen, J.: An iterative algorithm for synthesizing invariants. In: AAAI/IAAI, pp. 806–811 (2000)

    Google Scholar 

  21. Sadeqi, M., Holte, R.C., Zilles, S.: Detecting mutex pairs in state spaces by sampling. In: Cranefield, S., Nayak, A. (eds.) AI 2013. LNCS (LNAI), vol. 8272, pp. 490–501. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  22. Sadeqi, M., Holte, R.C., Zilles, S.: Using coarse state space abstractions to detect mutex pairs. In: SARA, pp. 104–111 (2013)

    Google Scholar 

  23. Scholz, U.: Extracting state constraints from PDDL-like planning domains. In: AIPS Workshop on Analyzing and Exploiting Domain Knowledge for Efficient Planning, pp. 43–48 (2000)

    Google Scholar 

  24. Vidal, V., Geffner, H.: Branching and pruning: An optimal temporal pocl planner based on constraint programming. Artif. Intell. 170, 298–335 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zilles, S., Holte, R.C.: The computational complexity of avoiding spurious states in state space abstraction. Artif. Intell. 174, 1072–1092 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sadeqi, M., Holte, R.C., Zilles, S. (2014). A Comparison of h 2 and MMM for Mutex Pair Detection Applied to Pattern Databases. In: Sokolova, M., van Beek, P. (eds) Advances in Artificial Intelligence. Canadian AI 2014. Lecture Notes in Computer Science(), vol 8436. Springer, Cham. https://doi.org/10.1007/978-3-319-06483-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06483-3_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06482-6

  • Online ISBN: 978-3-319-06483-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics