Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Separation Logic with One Quantified Variable

  • Conference paper
Computer Science - Theory and Applications (CSR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8476))

Included in the following conference series:

Abstract

We investigate first-order separation logic with one record field restricted to a unique quantified variable (1SL1). Undecidability is known when the number of quantified variables is unbounded and the satisfiability problem is pspace-complete for the propositional fragment. We show that the satisfiability problem for 1SL1 is pspace-complete and we characterize its expressive power by showing that every formula is equivalent to a Boolean combination of atomic properties. This contributes to our understanding of fragments of first-order separation logic that can specify properties about the memory heap of programs with singly-linked lists. When the number of program variables is fixed, the complexity drops to polynomial time. All the fragments we consider contain the magic wand operator and first-order quantification over a single variable.

Work partially supported by the ANR grant DynRes (project no. ANR-11-BS02-011) and by the EU Seventh Framework Programme under grant agreement No. PIOF-GA-2011-301166 (DATAVERIF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Berdine, J., Calcagno, C., O’Hearn, P.: Smallfoot: Modular automatic assertion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Brochenin, R., Demri, S., Lozes, E.: Reasoning about sequences of memory states. APAL 161(3), 305–323 (2009)

    MATH  MathSciNet  Google Scholar 

  4. Brochenin, R., Demri, S., Lozes, E.: On the almighty wand. IC 211, 106–137 (2012)

    MATH  MathSciNet  Google Scholar 

  5. Brotherston, J., Kanovich, M.: Undecidability of propositional separation logic and its neighbours. In: LICS 2010, pp. 130–139. IEEE (2010)

    Google Scholar 

  6. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results for a spatial assertion language for data structures. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 108–119. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Cook, B., Haase, C., Ouaknine, J., Parkinson, M., Worrell, J.: Tractable reasoning in a fragment of separation logic. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 235–249. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Demri, S., Deters, M.: Two-variable separation logic and its inner circle (September 2013) (submitted)

    Google Scholar 

  10. Demri, S., Galmiche, D., Larchey-Wendling, D., Mery, D.: Separation logic with one quantified variable. arXiv (2014)

    Google Scholar 

  11. Galmiche, D., Méry, D.: Tableaux and resource graphs for separation logic. JLC 20(1), 189–231 (2010)

    MATH  Google Scholar 

  12. Haase, C., Ishtiaq, S., Ouaknine, J., Parkinson, M.J.: SeLoger: A Tool for Graph-Based Reasoning in Separation Logic. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 790–795. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 21–38. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Ishtiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures. In: POPL 2001, pp. 14–26 (2001)

    Google Scholar 

  15. Ladner, R.: The computational complexity of provability in systems of modal propositional logic. SIAM Journal of Computing 6(3), 467–480 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  16. Larchey-Wendling, D., Galmiche, D.: The undecidability of boolean BI through phase semantics. In: LICS 2010, pp. 140–149. IEEE (2010)

    Google Scholar 

  17. Lozes, E.: Expressivité des logiques spatiales. PhD thesis, LIP, ENS Lyon, France (2004)

    Google Scholar 

  18. Lozes, E.: Separation logic preserves the expressive power of classical logic. In: Workshop SPACE 2004 (2004)

    Google Scholar 

  19. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773–789. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: LICS 2002, pp. 55–74. IEEE (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Demri, S., Galmiche, D., Larchey-Wendling, D., Méry, D. (2014). Separation Logic with One Quantified Variable. In: Hirsch, E.A., Kuznetsov, S.O., Pin, JÉ., Vereshchagin, N.K. (eds) Computer Science - Theory and Applications. CSR 2014. Lecture Notes in Computer Science, vol 8476. Springer, Cham. https://doi.org/10.1007/978-3-319-06686-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06686-8_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06685-1

  • Online ISBN: 978-3-319-06686-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics