Abstract
We investigate first-order separation logic with one record field restricted to a unique quantified variable (1SL1). Undecidability is known when the number of quantified variables is unbounded and the satisfiability problem is pspace-complete for the propositional fragment. We show that the satisfiability problem for 1SL1 is pspace-complete and we characterize its expressive power by showing that every formula is equivalent to a Boolean combination of atomic properties. This contributes to our understanding of fragments of first-order separation logic that can specify properties about the memory heap of programs with singly-linked lists. When the number of program variables is fixed, the complexity drops to polynomial time. All the fragments we consider contain the magic wand operator and first-order quantification over a single variable.
Work partially supported by the ANR grant DynRes (project no. ANR-11-BS02-011) and by the EU Seventh Framework Programme under grant agreement No. PIOF-GA-2011-301166 (DATAVERIF).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)
Berdine, J., Calcagno, C., O’Hearn, P.: Smallfoot: Modular automatic assertion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer, Heidelberg (2006)
Brochenin, R., Demri, S., Lozes, E.: Reasoning about sequences of memory states. APAL 161(3), 305–323 (2009)
Brochenin, R., Demri, S., Lozes, E.: On the almighty wand. IC 211, 106–137 (2012)
Brotherston, J., Kanovich, M.: Undecidability of propositional separation logic and its neighbours. In: LICS 2010, pp. 130–139. IEEE (2010)
Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results for a spatial assertion language for data structures. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 108–119. Springer, Heidelberg (2001)
Cook, B., Haase, C., Ouaknine, J., Parkinson, M., Worrell, J.: Tractable reasoning in a fragment of separation logic. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 235–249. Springer, Heidelberg (2011)
de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)
Demri, S., Deters, M.: Two-variable separation logic and its inner circle (September 2013) (submitted)
Demri, S., Galmiche, D., Larchey-Wendling, D., Mery, D.: Separation logic with one quantified variable. arXiv (2014)
Galmiche, D., Méry, D.: Tableaux and resource graphs for separation logic. JLC 20(1), 189–231 (2010)
Haase, C., Ishtiaq, S., Ouaknine, J., Parkinson, M.J.: SeLoger: A Tool for Graph-Based Reasoning in Separation Logic. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 790–795. Springer, Heidelberg (2013)
Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 21–38. Springer, Heidelberg (2013)
Ishtiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures. In: POPL 2001, pp. 14–26 (2001)
Ladner, R.: The computational complexity of provability in systems of modal propositional logic. SIAM Journal of Computing 6(3), 467–480 (1977)
Larchey-Wendling, D., Galmiche, D.: The undecidability of boolean BI through phase semantics. In: LICS 2010, pp. 140–149. IEEE (2010)
Lozes, E.: Expressivité des logiques spatiales. PhD thesis, LIP, ENS Lyon, France (2004)
Lozes, E.: Separation logic preserves the expressive power of classical logic. In: Workshop SPACE 2004 (2004)
Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773–789. Springer, Heidelberg (2013)
Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: LICS 2002, pp. 55–74. IEEE (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Demri, S., Galmiche, D., Larchey-Wendling, D., Méry, D. (2014). Separation Logic with One Quantified Variable. In: Hirsch, E.A., Kuznetsov, S.O., Pin, JÉ., Vereshchagin, N.K. (eds) Computer Science - Theory and Applications. CSR 2014. Lecture Notes in Computer Science, vol 8476. Springer, Cham. https://doi.org/10.1007/978-3-319-06686-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-06686-8_10
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-06685-1
Online ISBN: 978-3-319-06686-8
eBook Packages: Computer ScienceComputer Science (R0)