Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-start Methods

  • Living reference work entry
  • First Online:
Handbook of Heuristics

Abstract

Multi-start procedures were originally conceived as a way to exploit a local or neighborhood search procedure, by simply applying it from multiple random initial solutions. Modern multi-start methods usually incorporate a powerful form of diversification in the generation of solutions to help overcome local optimality. Different metaheuristics, such as GRASP or tabu search, have been applied to this end. This survey briefly sketches historical developments that have motivated the field and then focuses on modern contributions that define the current state of the art. Two classical categories of multi-start methods are considered according to their domain of application: global optimization and combinatorial optimization. Additionally, several methods are reviewed to estimate the number of local optima in combinatorial problems. The estimation of this number can help to establish the complexity of a given instance, and also to choose the most convenient neighborhood, which is especially interesting in the context of multi-start methods. Experiments on three well-known combinatorial optimization problems are included to illustrate the local optima estimation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Albrecht A, Lane P, Steinhofel K (2008) Combinatorial landscape analysis for k-SAT instances. In: IEEE congress on evolutionary computation, CEC 2008, Hong Kong. IEEE World congress on computational intelligence, pp 2498–2504

    Google Scholar 

  2. Albrecht A, Lane P, Steinhofel K (2010) Analysis of local search landscapes for k-SAT instances. Math Comput Sci 3(4):465–488

    Article  MathSciNet  MATH  Google Scholar 

  3. Beausoleil R, Baldoquin G, Montejo R (2008) A multi-start and path relinking methods to deal with multiobjective knapsack problems. Ann Oper Res 157:105–133

    Article  MathSciNet  MATH  Google Scholar 

  4. Boese K, Kahng A, Muddu S (1994) A new adaptive multi-start technique for combinatorial global optimisation. Oper Res Lett 16:103–113

    Article  MathSciNet  MATH  Google Scholar 

  5. Braysy O, Hasle G, Dullaert W (2004) A multi-start local search algorithm for the vehicle routing problem with time windows. Eur J Oper Res 159:586–605

    Article  MathSciNet  MATH  Google Scholar 

  6. Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11(4):265–270

    MathSciNet  Google Scholar 

  7. Chao A, Bunge J (2002) Estimating the number of species in a stochastic abundance model. Biometrics 58(3):531–539

    Article  MathSciNet  MATH  Google Scholar 

  8. Chao A, Lee SM (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87(417):210–217

    Article  MathSciNet  MATH  Google Scholar 

  9. Crowston WB, Glover F, Thompson GL, Trawick JD (1963) Probabilistic and parametric learning combinations of local job shop scheduling rules. Technical report 117, Carnegie-Mellon University, Pittsburgh

    Google Scholar 

  10. Dhouib S, Kharrat A, Chabchoub H (2010) A multi-start threshold accepting algorithm for multiple objective continuous optimization problems. Int J Numer Methods Eng 83:1498–1517

    Article  MathSciNet  MATH  Google Scholar 

  11. Eremeev AV, Reeves CR (2002) Non-parametric estimation of properties of combinatorial landscapes. In: Cagnoni S, Gottlieb J, Hart E, Middendorf M, Raidl G (eds) Applications of evolutionary computing. Lecture notes in computer science, vol 2279. Springer, Berlin/Heidelberg, pp 31–40

    Chapter  Google Scholar 

  12. Eremeev AV, Reeves CR (2003) On confidence intervals for the number of local optima. In: Proceedings of EvoWorkshops 2003, Essex, pp 224–235

    Google Scholar 

  13. Essafi M, Delorme X, Dolgui A (2010) Balancing lines with CNC machines: a multi-start and based heuristic. CIRP J Manuf Sci Technol 2:176–182

    Article  Google Scholar 

  14. Feo T, Resende M (1989) A probabilistic heuristic for a computationally difficult set covering problem. Oper Res Lett 8:67–71

    Article  MathSciNet  MATH  Google Scholar 

  15. Feo T, Resende M (1995) Greedy randomized adaptive search procedures. J Glob Optim 6:109–133

    Article  MathSciNet  MATH  Google Scholar 

  16. Fleurent C, Glover F (1999) Improved constructive multi-start strategies for the quadratic assignment problem using adaptive memory. INFORMS J Comput 11:198–204

    Article  MathSciNet  MATH  Google Scholar 

  17. Glover F (2000) Multi-start and strategic oscillation methods – principles to exploit adaptive memory. In: Laguna M, Gonzalez-Velarde J (eds) Computing tools for modeling optimization and simulation. Kluwer Academic, Boston, pp 1–25

    Chapter  Google Scholar 

  18. Glover F, Laguna M (1997) Tabu search. Kluwer Academic, Boston

    Book  MATH  Google Scholar 

  19. Grundel D, Krokhmal P, Oliveira C, Pardalos P (2007) On the number of local minima for the multidimensional assignment problem. J Combin Optim 13:1–18

    Article  MathSciNet  MATH  Google Scholar 

  20. Hagen L, Kahng A (1997) Combining problem reduction and adaptive multi-start: a new technique for superior iterative partitioning. IEEE Trans CAD 16:709–717

    Article  Google Scholar 

  21. Held M, Karp R (1970) The traveling-salesman problem and minimum spanning trees. Oper Res 18:1138–1162

    Article  MathSciNet  MATH  Google Scholar 

  22. Hernando L, Mendiburu A, Lozano JA (2013) An evaluation of methods for estimating the number of local optima in combinatorial optimization problems. Evol Comput 21(4):625–658

    Article  Google Scholar 

  23. Hickernell F, Yuan Y (1997) A simple multistart algorithm for global optimization. OR Trans 1:1–11

    Google Scholar 

  24. Hu X, Shonkwiler R, Spruill M (1994) Random restarts in global optimization. Ga Inst Technol 1:1–10

    Google Scholar 

  25. Kan AR, Timmer G (1987) Stochastic global optimization methods (Part II): multi level methods. Math Program 39:57–78

    Article  MATH  Google Scholar 

  26. Kan AR, Timmer G (1998) Global optimization. In: Kan R, Todds (eds) Handbooks in operations research and management science. North Holland, Amsterdam, pp 631–662

    Google Scholar 

  27. Kaucic M (2013) A multi-start opposition-based particle swarm optimization algorithm with adaptive velocity for bound constrained global optimization. J Glob Optim 55:165–188

    Article  MathSciNet  MATH  Google Scholar 

  28. Lan G, DePuy G (2006) On the effectiveness of incorporating randomness and memory into a multi-start metaheuristic with application to the set covering problem. Comput Ind Eng 51:362–374

    Article  Google Scholar 

  29. Martí R, Reinelt G, Duarte A (2012) A benchmark library and a comparison of heuristic methods for the linear ordering problem. Comput Optim Appl 51(3):1297–1317

    Article  MathSciNet  MATH  Google Scholar 

  30. Martí R, Resende M, Ribeiro C (2013) Multi-start methods for combinatorial optimization. Eur J Oper Res 226(1):1–8

    Article  MathSciNet  MATH  Google Scholar 

  31. Mayne DQ, Meewella C (1988) A non-clustering multistart algorithm for global optimization. In: Bensoussan A, Lions J-L (eds) Analysis and optimization of systems. Lecture notes in control and information sciences. Springer, Berlin/New York, pp 111–117

    Google Scholar 

  32. Mezmaz M, Melab N, Talbi E (2006) Using the multi-start and island models for parallel multi-objective optimization on the computational grid. In: Second IEEE international conference on e-science and grid computing, Amsterdam

    Book  MATH  Google Scholar 

  33. Moreno J, Mladenovic N, Moreno-Vega J (1995) An statistical analysis of strategies for multistart heuristic searches for p-facility location-allocation problems. In: Eighth meeting of the EWG on locational analysis Lambrecht

    Google Scholar 

  34. Muth JF, Thompson GL (1963) Industrial scheduling. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  35. Patterson R, Pirkul H, Rolland E (1999) Adaptive reasoning technique for the capacitated minimum spanning tree problem. J Heuristics 5:159–180

    Article  MATH  Google Scholar 

  36. Reeves C, Aupetit-Bélaidouni M (2004) Estimating the number of solutions for SAT problems. In: Yao X, Burke E, Lozano J, Smith J, Merelo-Guervós J, Bullinaria J, Rowe J, Tino P, Kabán A, Schwefel HP (eds) Parallel problem solving from nature – PPSN VIII. Lecture notes in computer science, vol 3242. Springer, Berlin/Heidelberg, pp 101–110

    Google Scholar 

  37. Resende M, Ribeiro C (2010) Greedy randomized adaptive search procedures: advances and applications. In: Gendreau M, Potvin JY (eds) Handbook of metaheuristics, 2nd edn. Springer, New York, pp 293–319

    Google Scholar 

  38. Solis F, Wets R (1981) Minimization by random search techniques. Math Oper Res 6:19–30

    Article  MathSciNet  MATH  Google Scholar 

  39. Taillard E, Badeau P, Gendreau M, Guertin F, Potvin J (1997) A tabu search heuristic of the vehicle routing problem with time windows. Transp Sci 31:170–186

    Article  MATH  Google Scholar 

  40. Tu W, Mayne R (2002) An approach to multi-start clustering for global optimization with non-linear constraints. Int J Numer Methods Eng 53:2253–2269

    Article  MathSciNet  MATH  Google Scholar 

  41. Ugray Z, Lasdon L, Plummer J, Glover F, Kelly J, Martí R (2007) Scatter search and local NLP solvers: a multistart framework for global optimization. INFORMS J Comput 19(3):328–340

    Article  MathSciNet  MATH  Google Scholar 

  42. Ugray Z, Lasdon L, Plummer J, Bussieck M (2009) Dynamic filters and randomized drivers for the multi-start global optimization algorithm MSNLP. Optim Methods Softw 24:4–5

    Article  MathSciNet  MATH  Google Scholar 

  43. Villegas J, Prins C, Prodhon C, Medaglia A, Velasco N (2010) GRASP/VND and multi-start evolutionary local search for the single truck and trailer routing problem with satellite depots. Eng Appl Artif Intell 23:780–794

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Spanish Ministerio de Economía y Competitividad (codes TIN2016-78365-R, TIN2015-65460, and TIN2013-41272P), the Basque Government (IT-609-13 program), and Generalitat Valenciana (project Prometeo 2013/049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Martí .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing AG

About this entry

Cite this entry

Martí, R., Lozano, J.A., Mendiburu, A., Hernando, L. (2015). Multi-start Methods. In: Martí, R., Panos, P., Resende, M. (eds) Handbook of Heuristics. Springer, Cham. https://doi.org/10.1007/978-3-319-07153-4_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07153-4_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-07153-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics