Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automating Hint Generation with Solution Space Path Construction

  • Conference paper
Intelligent Tutoring Systems (ITS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8474))

Included in the following conference series:

Abstract

Developing intelligent tutoring systems from student solution data is a promising approach to facilitating more widespread application of tutors. In principle, tutor feedback can be generated by matching student solution attempts to stored intermediate solution states, and next-step hints can be generated by finding a path from a student’s current state to a correct solution state. However, exact matching of states and paths does not work for many domains, like programming, where the number of solution states and paths is too large to cover with data. It has previously been demonstrated that the state space can be substantially reduced using canonicalizing operations that abstract states. In this paper, we show how solution paths can be constructed from these abstract states that go beyond the paths directly observed in the data. We describe a domain-independent algorithm that can automate hint generation through use of these paths. Through path construction, less data is needed for more complete hint generation. We provide examples of hints generated by this algorithm in the domain of programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barnes, T., Stamper, J.: Toward automatic hint generation for logic proof tutoring using historical student data. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 373–382. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Blikstein, P.: Using learning analytics to assess students’ behavior in open-ended programming tasks. In: Proceedings of the 1st International Conference on Learning Analytics and Knowledge, pp. 110–116 (2011)

    Google Scholar 

  3. Gross, S., Mokbel, B., Hammer, B., Pinkwart, N.: Feedback Provision Strategies in Intelligent Tutoring Systems Based on Clustered Solution Spaces. In: DeLFI 2012: Die 10. e-Learning Fachtagung Informatik, pp. 27–38 (2012)

    Google Scholar 

  4. Huang, J., Piech, C., Nguyen, A., Guibas, L.: Syntactic and Functional Variability of a Million Code Submissions in a Machine Learning MOOC. In: AIED 2013 Workshops Proceedings Volume, pp. 25–32 (2013)

    Google Scholar 

  5. Mokbel, B., Gross, S., Paassen, B., Pinkwart, N., Hammer, B.: Domain-Independent Proximity Measures in Intelligent Tutoring Systems. In: Proceedings of the 6th International Conference on Educational Data Mining (EDM), pp. 334–335 (2013)

    Google Scholar 

  6. Rivers, K., Koedinger, K.R.: A Canonicalizing Model for Building Programming Tutors. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 591–593. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Vanlehn, K.: The behavior of tutoring systems. International Journal of Artificial Intelligence in Education 16(3), 227–265 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rivers, K., Koedinger, K.R. (2014). Automating Hint Generation with Solution Space Path Construction. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K. (eds) Intelligent Tutoring Systems. ITS 2014. Lecture Notes in Computer Science, vol 8474. Springer, Cham. https://doi.org/10.1007/978-3-319-07221-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07221-0_41

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07220-3

  • Online ISBN: 978-3-319-07221-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics