Abstract
Twitter, due to its massive growth as a social networking platform, has been in focus for the analysis of its user generated content for personalization and recommendation tasks. A common challenge across these tasks is identifying user interests from tweets. Semantic enrichment of Twitter posts, to determine user interests, has been an active area of research in the recent past. These approaches typically use available public knowledge-bases (such as Wikipedia) to spot entities and create entity-based user profiles. However, exploitation of such knowledge-bases to create richer user profiles is yet to be explored. In this work, we leverage hierarchical relationships present in knowledge-bases to infer user interests expressed as a Hierarchical Interest Graph. We argue that the hierarchical semantics of concepts can enhance existing systems to personalize or recommend items based on a varied level of conceptual abstractness. We demonstrate the effectiveness of our approach through a user study which shows an average of approximately eight of the top ten weighted hierarchical interests in the graph being relevant to a user’s interests.
This material is based on the first author’s work at IBM Research, complemented in part based upon work supported by the National Science Foundation SoCS program under Grant No.(IIS-1111182, 09/01/2011-08/31/2014). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the employer or funding organization. We would like to thank: (1) Zemanta for their support; (2) Participants of the user study; (3) T K Prasad, Delroy Cameron, Sarasi Lalithasena, Sanjaya Wijeyaratne and Revathy Krishnamurthy for their invaluable feedback.
Chapter PDF
Similar content being viewed by others
Keywords
References
Abel, F., Gao, Q., Houben, G.-J., Tao, K.: Analyzing User Modeling on Twitter for Personalized News Recommendations. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 1–12. Springer, Heidelberg (2011)
Abel, F., Gao, Q., Houben, G.-J., Tao, K.: Semantic Enrichment of Twitter Posts for User Profile Construction on the Social Web. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 375–389. Springer, Heidelberg (2011)
Albakour, M.-D., Macdonald, C., Ounis, I.: On Sparsity and Drift for Effective Real-time Filtering in Microblogs. In: CIKM 2013 (2013)
Collins, A.M., Loftus, E.F.: A spreading-activation theory of semantic processing. Psychological Review 82(6), 407–428 (1975)
Crestani, F.: Application of Spreading Activation Techniques in InformationRetrieval. Artificial Intellence Review
Derczynski, L., Maynard, D., Aswani, N., Bontcheva, K.: Microblog-genre Noise and Impact on Semantic Annotation Accuracy. In: HT 2013 (2013)
Genc, Y., Sakamoto, Y., Nickerson, J.V.: Discovering Context: Classifying Tweets Through a Semantic Transform Based on Wikipedia. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) FAC 2011. LNCS, vol. 6780, pp. 484–492. Springer, Heidelberg (2011)
Godoy, D., Amandi, A.: Modeling User Interests by Conceptual Clustering. Inf. Syst. (2006)
Harvey, M., Crestani, F., Carman, M.J.: Building User Profiles from Topic Models for Personalised Search. In: CIKM 2013 (2013)
Hinton, G.E.: Parallel Models of Associative Memory (1989)
Jain, P., Hitzler, P., Sheth, A.P., Verma, K., Yeh, P.Z.: Ontology Alignment for Linked Open Data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 402–417. Springer, Heidelberg (2010)
Kapanipathi, P., Orlandi, F., Sheth, A.P., Passant, A.: Personalized Filtering of the Twitter Stream. In: SPIM Workshop at ISWC 2011 (2011)
Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval (2008)
Mendes, P.N., Jakob, M., GarcÃa-Silva, A., Bizer, C.: DBpedia Spotlight: Shedding Light on the Web of Documents. In: I-Semantics 2011 (2011)
Michelson, M., Macskassy, S.A.: Discovering Users’ Topics of Interest on Twitter: A First Look. In: AND 2010 (2010)
Mislove, A., Viswanath, B., Gummadi, K.P., Druschel, P.: You Are Who You Know: Inferring User Profiles in Online Social Networks. In: WSDM 2010 (2010)
Orlandi, F., Breslin, J., Passant, A.: Aggregated, Interoperable and Multi-domain User Profiles for the Social Web. In: I-SEMANTICS 2012 (2012)
Ponzetto, S.P., Strube, M.: Deriving a Large Scale Taxonomy from Wikipedia. In: AAAI 2007 (2007)
Qiu, F., Cho, J.: Automatic Identification of User Interest for Personalized Search. In: WWW 2006 (2006)
Quilian, M.R.: Semantic Memory. In: M. Minski (ed.). Semantic Information Processing. MIT Press, Cambridge (1968)
Ramage, D., Dumais, S.T., Liebling, D.J.: Characterizing Microblogs with Topic Models. In: ICWSM 2010 (2010)
Ramanathan, K., Kapoor, K.: Creating User Profiles Using Wikipedia. In: Laender, A.H.F., Castano, S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp. 415–427. Springer, Heidelberg (2009)
Ritter, A., Clark, S., Mausam, Etzioni, O.: Named entity recognition in tweets: An experimental study. In: EMNLP 2011 (2011)
Schonhofen, P.: Identifying Document Topics Using the Wikipedia Category Network. In: WI 2006 (2006)
Sieg, A., Mobasher, B., Burke, R.: Web Search Personalization with Ontological User Profiles. In: CIKM 2007 (2007)
Sriram, B., Fuhry, D., Demir, E., Ferhatosmanoglu, H., Demirbas, M.: Short Text Classification in Twitter to Improve Information Filtering. In: SIGIR 2010 (2010)
Tao, K., Abel, F., Gao, Q., Houben, G.-J.: TUMS: Twitter-Based User Modeling Service. In: GarcÃa-Castro, R., Fensel, D., Antoniou, G. (eds.) ESWC 2011. LNCS, vol. 7117, pp. 269–283. Springer, Heidelberg (2012)
Xu, T., Oard, D.W.: Wikipedia-based Topic Clustering for Microblogs. In: Proceedings of the American Society for Information Science and Technology (2011)
Xu, Y., Wang, K., Zhang, B., Chen, Z.: Privacy-enhancing Personalized Web Search. In: WWW 2007 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Kapanipathi, P., Jain, P., Venkataramani, C., Sheth, A. (2014). User Interests Identification on Twitter Using a Hierarchical Knowledge Base. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds) The Semantic Web: Trends and Challenges. ESWC 2014. Lecture Notes in Computer Science, vol 8465. Springer, Cham. https://doi.org/10.1007/978-3-319-07443-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-07443-6_8
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07442-9
Online ISBN: 978-3-319-07443-6
eBook Packages: Computer ScienceComputer Science (R0)